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 a b s t r a c t

In this paper, we expand recently introduced observer-based periodic event-triggered control (PETC) 
and self-triggered control (STC) schemes for reaction–diffusion PDEs to boundary control of 2 × 2 
coupled hyperbolic PDEs in canonical form and with anti-collocated measurement and actuation 
processes. The class of problem under study governs transport phenomena arising in water man-
agement systems, oil drilling, and traffic flow, to name a few. Relative to the state of the art of 
observer-based event-triggered control of hyperbolic PDEs, our contribution goes two steps further 
by proposing observer-based PETC and STC for the considered class of systems. These designs arise 
from a non-trivial redesign of an existing continuous-time event-triggered control (CETC) scheme. 
PETC and STC eliminate the need for constant monitoring of an event-triggering function as in 
CETC; PETC requires only periodic evaluations of the triggering function for event detection, whereas 
STC is a ‘‘predictor-feedback" that anticipates the next event time at the current event exploiting 
continuously accessible output measurements. The introduced resource-aware designs act as input 
holding mechanisms allowing for the update of the input signal only at events. Subject to the designed 
boundary output feedback PETC and STC control laws characterized by a set of event-trigger design 
parameters, the resulting closed-loop systems, which are inherently Zeno-free by design, achieve 
exponential convergence to zero in the spatial L2 norm. We illustrate the feasibility of the approach 
by applying the control laws to the linearized Saint-Venant model, which describes the dynamics of 
shallow water waves in a canal and is used to design flow stabilizers via gate actuation. The provided 
simulation results illustrate the proposed theory.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Hyperbolic PDEs are useful for the estimation, prediction, and 
control of various systems such as open channel fluid flow (Bastin 
& Coron, 2011; Coron, d’Andréa Novel, & Bastin, 1999; Diagne, 
Diagne, Tang & Krstic, 2017; Diagne, Tang, Diagne & Krstic, 2017; 
Halleux, Prieur, Coron, dÄndréa Novel, & Bastin, 2003), water–
sediment dynamic systems (Diagne, Diagne, et al., 2017; Di-
agne, Tang, et al., 2017; Somathilake & Diagne, 2024) and traf-
fic systems (Burkhardt, Yu, & Krstic, 2021; Yu & Krstic, 2022). 
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Output-feedback control of 2 × 2 hyperbolic PDEs is presented 
in Vazquez, Krstic, and Coron (2011) via the backstepping ap-
proach with further developments in Di Meglio, Vazquez, and 
Krstic (2013), Hu, Di Meglio, Vazquez, and Krstic (2016). Sub-
sequent advancements led to the design of adaptive observers 
in Anfinsen, Diagne, Aamo, and Krstic (2016, 2017) and adaptive 
boundary control strategies in Anfinsen and Aamo (2019). In 
the contributions reported above, global exponential stability is 
principally established with respect to the L2 norm of the state, 
and both full-state feedback and observer-based control design 
are considered.

1.1. Event-based control of linear coupled hyperbolic systems

The aforementioned results on the boundary control hyper-
bolic PDEs rely on continuous-time control (CTC), which is of-
ten not feasible. A practical solution is sampled-data control, 
where the control input is updated according to a predetermined 
sampling schedule. However, the maximum allowable sampling 
interval of this schedule must be chosen conservatively to en-
sure that the control input is updated frequently. Alternatively, 
data mining, AI training, and similar technologies.
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event-triggered control (ETC) introduces feedback into the control 
update tasks. Here, the control input is updated only when a cer-
tain condition related to the system states is met, which we call 
an event. This feedback integration means the schedule of control 
update times is not restricted by a worst-case scenario. Control 
updates are triggered based on the current state rather than 
an unlikely worst-case scenario, leading to significantly sparser 
control updates compared to traditional sampled-data control 
methods.

The latest advancements in control systems theory have wit-
nessed an unprecedented expansion in event-based control ap-
plied to PDE systems. ETC for parabolic PDEs involving both 
static and dynamic triggering conditions can be found in Espitia, 
Karafyllis, and Krstic (2021), Rathnayake and Diagne (2024a), 
Rathnayake, Diagne, Espitia, and Karafyllis (2021), Rathnayake, 
Diagne, and Karafyllis (2022), Wang and Krstic (2022a). Dealing 
with event-based boundary control of hyperbolic systems, our 
current contributions align with works such as Espitia (2020), 
Wang and Krstic (2022b) with particular emphasis on Espitia 
(2020), which proposes a globally exponentially convergent
observer-based ETC for a 2 × 2 hyperbolic system in the canonical 
form. The authors of Diagne and Karafyllis (2021) design a static 
triggering condition that achieves exponential stabilization of a 
scalar but nonlinear hyperbolic system describing parts flow in a 
highly re-entrant manufacturing plant. The model of concern is 
often used to describe semi-conductors and chip assembly lines.

1.2. Contributions

This contribution presents two major improvements relative 
to the state of the art of observer-based ETC for hyperbolic PDEs 
by removing the necessity of continuous monitoring of the trig-
gering functions, an unavoidable step when implementing the 
regular ETC stabilizer (for instance Espitia, 2020), which we refer 
to as continuous-time ETC (CETC). This enables the controller to 
be implemented in a digital platform. The periodic ETC (PETC) 
mechanism proposes a method in which the triggering function 
is periodically evaluated to determine if the input needs to be 
updated. In contrast, sampled-time control updates the control 
input at fixed time intervals. The self-triggered control (STC) de-
termines the next triggering time during the current triggering 
instance.

The PETC and STC designs introduced for a scalar reaction–
diffusion PDE with explicit gain kernel functions (Rathnayake & 
Diagne, 2024b) are proven to apply to hyperbolic PDE systems 
of a higher level of complexity induced by coupled dynamics, 
leading to implicitly defined coupled gain kernel functions. The 
authors of Zhang, Rathnayake, Diagne, and Krstic (2025) proposed 
full-state feedback PETC and STC designs for a 2 × 2 coupled 
hyperbolic traffic PDEs exploring the notion of a performance 
barrier (Ong & Cortés, 2023; Rathnayake, Diagne, Cortés, & Krstic, 
2025). However, observer-based PETC and STC designs for hyper-
bolic PDEs are still lacking, despite being crucial for practical con-
trol implementations in the context of flow and fluid systems for 
which distributed measurements of the state is often implausible. 
To address this significant gap, this work presents observer-based 
PETC and STC designs for 2 × 2 coupled hyperbolic PDEs applied 
to the linearized Saint-Venant equations modeling water flow and 
level regulation problem via gate actuation.

Both PETC and STC are inherently free from Zeno behavior, and 
the well-posedness of the closed-loop system under both PETC 
and STC is provided. Furthermore, using Lyapunov arguments, we 
establish the exponential convergence of the closed-loop signals 
to zero in the L2 spatial norm. The rapid development of remote 
actuation systems for automated control of networks of irrigation 
canals justifies the application example as preserving actuation 
2

and communication resources. This enables the expansion of 
the level of autonomy by drastically reducing energy and band-
width consumption while also providing methods that can be 
implemented on digital infrastructure. In addition, elimination 
of the continuous movement of the sluice gate will reduce the 
deterioration of the gate actuation mechanism with time.

Organization of the paper: Section 2 presents an exponen-
tially stabilizing boundary control law for a 2 × 2 linear hyper-
bolic system followed by its emulation for the event-triggering 
mechanisms as well as necessary preliminary results for the 
proposed control designs including the CETC design. Sections 3
and 4 present the exponentially convergent PETC, and STC event-
triggering mechanisms. Finally, we present the numerical simu-
lations of the control strategies applied to the linearized Saint-
Venant equations and concluding remarks in Sections 5 and 6, 
respectively.

Notation. Let R be the set of real numbers and R+ be the set 
of positive real numbers. Let N be the set of natural numbers 
including 0. Define the constant ℓ ∈ R+. By L2(0, ℓ), we de-
note the equivalence class of Lebesgue measurable functions f :

[0, ℓ] → R such that ∥f ∥L2((0,ℓ);R) =

(∫ ℓ

0 |f (x)|2
)1/2

< ∞. 
Define C0(I; L2((0, ℓ);R)) as the space of continuous functions 
u(·, t) for an interval I ⊆ R+ such that I ∋ t → u(·, t) ∈

L2((0, ℓ);R). Also, for the equivalence class of Lebesgue measur-
able functions χ1, χ2 : [0, ℓ] → R, we define ∥

(
χ1, χ2

)T
∥ =(

∥χ1∥
2
L2((0,ℓ);R) + ∥χ2∥

2
L2((0,ℓ);R)

)1/2
.

2. Preliminaries and problem formulation

We consider the following 2 × 2 linear hyperbolic PDE system 
in the canonical form where the independent variables t ≥ 0 and 
x ∈ [0, ℓ] are time and space variables, respectively, and the PDE 
states u(x, t) and v(x, t) satisfy
∂tu(x, t) = − λ1∂xu(x, t) + c1(x)v(x, t), (1)

∂tv(x, t) =λ2∂xv(x, t) + c2(x)u(x, t), (2)

with boundary conditions 
u(0, t) = qv(0, t), v(ℓ, t) = ρu(ℓ, t) + U(t). (3)

Here, U(t) is the continuous-time boundary control input, and 
λ1, λ2 ∈ R+, c1(x), c2(x) ∈ C0((0, ℓ);R). Further, q ̸= 0 is the 
distal reflection term, and ρ ̸= 0 is the proximal reflection term. 
The initial conditions are such that (u0, v0)T ∈ L2((0, ℓ);R2). We 
make the following assumption on the reflection terms. 

Assumption 1 (Espitia, 2020).  The reflection terms are small 
enough such that |ρq| ≤

1
2 .

2.1. Continuous-time output feedback control and its emulation for 
ETC

In this subsection, we develop a continuous-time backstepping 
output feedback control U(t) capable of exponentially stabilizing 
the closed-loop system consisting of the plant (1)–(3) and an 
observer, using v(0, t) as the available boundary measurement. 
Since the actuation and measurement are located at opposite 
boundaries, this setup is referred to as anti-collocated sensing and 
actuation, which differs from the configuration in Espitia (2020), 
where both the actuation and measurement are located at the 
same boundary.

We design an observer consisting of the copy of the plant plus 
some output injection terms with the observer states denoted by 
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(û, v̂)T . Defining the observer errors as ũ := u − û, ṽ := v − v̂, 
the following observer is proposed:
∂t û(x, t) = − λ1∂xû(x, t) + c1(x)v̂(x, t) + p1(x)ṽ(0, t), (4)

∂t v̂(x, t) =λ2∂xv̂(x, t) + c2(x)û(x, t) + p2(x)ṽ(0, t), (5)

with boundary conditions 
û(0, t) = qv(0, t), v̂(ℓ, t) = ρû(ℓ, t) + U(t), (6)

and initial conditions such that (û0, v̂0)T ∈ L2((0, ℓ);R2).
The functions p1(x) and p2(x) are the observer output injection 

gains, which are to be determined through backstepping design 
to ensure the convergence of the estimated states to the plant 
states. It can be easily verified that the dynamics of the observer 
errors satisfy
∂t ũ(x, t) = − λ1∂xũ(x, t) + c1(x)ṽ(x, t) − p1(x)ṽ(0, t), (7)

∂t ṽ(x, t) =λ2∂xṽ(x, t) + c2(x)ũ(x, t) − p2(x)ṽ(0, t), (8)

with boundary conditions 
ũ(0, t) = 0, ṽ(ℓ, t) = ρũ(ℓ, t), (9)

where the initial conditions satisfy (ũ0, ṽ0)T ∈ L2((0, ℓ);R2).
Consider the following observer error backstepping transfor-

mations:

ũ(x, t) = α̃(x, t) −

∫ x

0
Pαα(x, ξ )α̃(ξ, t)dξ

−

∫ x

0
Pαβ (x, ξ )β̃(ξ, t)dξ, (10)

ṽ(x, t) = β̃(x, t) −

∫ x

0
Pβα(x, ξ )α̃(ξ, t)dξ

−

∫ x

0
Pββ (x, ξ )β̃(ξ, t)dξ, (11)

defined over the triangular domain 0 ≤ ξ ≤ x ≤ ℓ. The output 
gain terms are chosen as
p1(x) = −λ2Pαβ (x, 0), p2(x) = −λ2Pββ (x, 0).

Hence, the observer error system (7)–(9) is transformed into the 
following target system:

∂t α̃(x, t) = − λ1∂xα̃(x, t), (12)

∂t β̃(x, t) =λ2∂xβ̃(x, t), (13)

with boundary conditions 
α̃(0, t) = 0, β̃(ℓ, t) = ρα̃(ℓ, t). (14)

The inverse transformations of (10), (11) are given by

α̃(x, t) =ũ(x, t) +

∫ x

0
Ruu(x, ξ )ũ(ξ, t)dξ

+

∫ x

0
Ruv(x, ξ )ṽ(ξ, t)dξ, (15)

β̃(x, t) =ṽ(x, t) +

∫ x

0
Rvu(x, ξ )ũ(ξ, t)dξ

+

∫ x

0
Rvv(x, ξ )ṽ(ξ, t)dξ, (16)

defined over the triangular domain 0 ≤ ξ ≤ x ≤ ℓ.
In order to derive a stabilizing control law via PDE back-

stepping considering the observer system (4)–(6), the following 
backstepping transformations are introduced:

α̂(x, t) =û(x, t) −

∫ x

K uu(x, ξ )û(ξ, t)dξ

0

3

−

∫ x

0
K uv(x, ξ )v̂(ξ, t)dξ, (17)

β̂(x, t) =v̂(x, t) −

∫ x

0
K vu(x, ξ )û(ξ, t)dξ

−

∫ x

0
K vv(x, ξ )v̂(ξ, t)dξ . (18)

The inverse transformations of (17), (18) are given by

û(x, t) =α̂(x, t) +

∫ x

0
Lαα(x, ξ )α̂(ξ, t)dξ

+

∫ x

0
Lαβ β̂(ξ, t)dξ, (19)

v̂(x, t) =β̂(x, t) +

∫ x

0
Lβα(x, ξ )α̂(ξ, t)dξ

+

∫ x

0
Lββ (x, ξ )β̂(ξ, t)dξ . (20)

The backstepping transformations are defined over the triangular 
domain 0 ≤ ξ ≤ x ≤ ℓ. Let us choose the control input U(t) as 

U(t) =

∫ ℓ

0
Nα(ξ )α̂(ξ, t)dξ +

∫ ℓ

0
Nβ (ξ )β̂(ξ, t)dξ, (21)

where

Nα(ξ ) =Lβα(ℓ, ξ ) − ρLαα(ℓ, ξ ), (22)

Nβ (ξ ) =Lββ (ℓ, ξ ) − ρLαβ (ℓ, ξ ). (23)

It is worth noting that the control input U(t) given by (21) 
can also be expressed in terms of û(x, t) and v̂(x, t) (Somathilake, 
Rathnayake, & Diagne, 2024).

Then, the observer (4)–(6) gets transformed into the following 
target system:

∂t α̂(x, t) = − λ1∂xα̂(x, t) + p̄1(x)β̃(0, t), (24)

∂t β̂(x, t) =λ2∂xβ̂(x, t) + p̄2(x)β̃(0, t), (25)

with boundary conditions 
α̂(0, t) = qβ̂(0, t) + qβ̃(0, t), β̂(ℓ, t) = ρα̂(ℓ, t), (26)

where

p̄1(x) =p1(x) −

∫ x

0
K uu(x, ξ )p1(ξ )dξ

−

∫ x

0
K uv(x, ξ )p2(ξ )dξ, (27)

p̄2(x) =p2(x) −

∫ x

0
K vu(x, ξ )p1(ξ )dξ

−

∫ x

0
K vv(x, ξ )p2(ξ )dξ . (28)

The PDEs that the kernels of the backstepping transformations 
(10), (11), (15), (16), (17), (18), (19), and (20) satisfy are de-
fined in Somathilake et al. (2024). Additionally, the proof of 
existence and uniqueness of solutions to the kernel PDEs is given 
in Vazquez et al. (2011). 

Proposition 1.  Subject to Assumption  1, the continuous-time plant 
and the observer (1)–(3), (4)–(6) with the continuous-time control 
input (21) is globally exponentially stable in the spatial L2 norm.

We refer the readers to Somathilake et al. (2024) for the proof 
of the above proposition.

From (21), we derive by emulation the following aperiodic 
sampled-data control signal held constant between events: 
Uω(t) := U(tω), (29)
k k
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for all t ∈ [tωk , tωk+1), k ∈ N, ω = {‘‘c ’’, ‘‘p’’, ‘‘s’’}. Entities related 
to CETC, PETC, and STC are labeled by the superscripts ‘‘c ’’, ‘‘p’’, 
and ‘‘s’’ respectively. In subsequent sections, we present event-
triggering rules to determine increasing sequences of event times, 
Iω = {tωk }k∈N. The deviation between the sampled-data control 
(29) and the continuous control (21), referred to as the input 
holding error, is defined as 
d(t) := Uω

k (t) − U(t), (30)

for t ∈ [tωk , tωk+1), k ∈ N. Under the control input Uω
k (t), the 

boundary values (3), (6), and (26) change to
v(ℓ, t) =ρu(ℓ, t) + Uω

k (t), (31)

v̂(ℓ, t) =ρû(ℓ, t) + Uω
k (t), (32)

β̂(ℓ, t) =ρα̂(ℓ, t) + d(t). (33)

In the following proposition, we establish the well-posedness of 
the systems (1)–(3), (4) and (31)–(6), (32) between consecutive 
events. 

Proposition 2.  Let k ∈ N, and Uω
k (t) ∈ R be constant between 

two event times tωk  and tωk+1. For a given (u(·, tωk ), v(·, tωk ))T ∈

L2((0, ℓ);R2) and (û(·, tωk ), v̂(·, tωk ))T ∈ L2((0, ℓ);R2), there exist 
unique solutions such that (u, v)T ∈ C0([tωk , tωk+1]; L

2((0, ℓ);R2))
and (û, v̂)T ∈ C0([tωk , tωk+1]; L

2((0, ℓ);R2)) to the systems (1)–(3), 
(4) and (31)–(6), (32) respectively between two time instants tωk  and 
tωk+1.

The proof of Proposition  2 is similar to Espitia (2020, Proposi-
tion 1).

We now proceed to develop the following result on the exis-
tence and uniqueness of solutions of the systems (1)–(3), (4) and 
(31)–(6), (32) with the input (29) for all t ∈ R+. 

Corollary 1.  Let k ∈ N, and Uω
k (t) ∈ R be constant between two 

event times tωk  and tωk+1 in the sequence of event times Iω = {tωk }k∈N, 
and assume that for all such intervals, there exists a lower bound 
τ0 > 0 such that tωk+1 − tωk ≥ τ0. Then, for every initial condition 
(u0, v0)T ∈ L2((0, ℓ);R2) and (û0, v̂0)T ∈ L2((0, ℓ);R2), there exist 
unique solutions (u, v)T ∈ C0(R+

; L2((0, ℓ);R2)) and (û, v̂)T ∈

C0(R+
; L2((0, ℓ);R2)) to the systems (1)–(3), (4) and (31)–(6), (32) 

respectively.

The proof of the above corollary can be obtained by using 
Proposition  2 and following (Espitia, 2020, Proposition 1).

Considering an interval t ∈ (tωk , tωk+1), k ∈ N and using 
Proposition  2, the following lemma holds for d(t) given by (30).

Lemma 1.  For d(t) given by (30), the following inequality holds for 
all t ∈ (tωk , tωk+1), k ∈ N:

(ḋ(t))2 ≤ϵ0∥(α̂(·, t), β̂(·, t))T∥2
+ ϵ1α̂

2(ℓ, t)

+ ϵ2β̃
2(0, t) + ϵ3d2(t), (34)

where ϵ0, ϵ1, ϵ2, and ϵ3 ≥ 0 are given by

ϵ0 =5max
{
λ2
1

∫ ℓ

0
(∂ξNα(ξ ))2dξ,

λ2
2

∫ ℓ

0
(∂ξNβ (ξ ))2dξ

}
, (35)

ϵ1 =5(λ1Nα(ℓ) − ρλ2Nβ (ℓ))2, (36)

ϵ2 =5
(∫ ℓ

0

(
Nα(ξ )p̄1(ξ ) + Nβ (ξ )p̄2(ξ )

)
dξ

+ qλ1Nα(0)
)2

, (37)
4

ϵ3 =5(λ2Nβ (ℓ))2. (38)

The proof of Lemma  1 follows the steps in Espitia (2020, 
Lemma 2) and can be found in Somathilake et al. (2024).

2.2. Continuous-time event-triggered control (CETC)

This section details the CETC triggering mechanism that de-
termines the increasing sequence of event times Ic = {tck }k∈N at 
which the control input U c

k (t) is updated by continuously evalu-
ating a triggering function Γ c(t). The sequence Ic is determined 
by the following rule. 

Definition 1.  The increasing sequence of event times Ic =

{tck }k∈N with tc0 = 0 are determined via the following rule:

tck+1 := inf{t ∈ R|t > tck , Γ c(t) > 0, k ∈ N}, (39)

Γ c(t) :=θd2(t) + m(t), (40)

where d(t) is given by (30). The dynamic variable m(t) evolves 
according to the ODE

ṁ(t) = − ηm(t) + θmd2(t) − κ0∥(α̂(·, t), β̂(·, t))T∥2

− κ1α̂
2(ℓ, t) − κ2β̃

2(0, t), (41)

for t ∈ (tck , t
c
k+1), k ∈ N with m(0) = m0 < 0, m(tc

−

k ) =

m(tck ) = m(tc
+

k ) k ∈ N. Let η, θ > 0 be arbitrary parameters 
and κ0, κ1, κ2 > 0, and θm > 0 be event-trigger parameters to 
be determined.

It should be noted that the CETC design follows the design 
procedure in Espitia (2020) with the only difference being that 
the control input is anti-collocated with the measurement.

The event-triggering rule guarantees that Γ c(t) ≤ 0 for all 
t ∈ [0, F ), where F = sup{Ic}, hence the following lemma holds. 

Lemma 2.  Under the CETC approach (29), (39)–(41), the dynamic 
variable m(t) with m0 < 0 satisfies m(t) < 0 for all t ∈ [0, F ), 
where F = sup{Ic}.

The proof of the above Lemma is similar to Espitia (2020, 
Lemma 1).

The existence of a minimum dwell-time τ > 0 is shown in the 
following lemma.

Lemma 3.  Let the CETC events be triggered according to the rule 
(39)–(41). Furthermore, let σ ∈ (0, 1) and θ be free parameters, and 
κ0, κ1, κ2 > 0 satisfy 

θϵi = (1 − σ )κi, for i = 0, 1, 2, (42)

where ϵ0, ϵ1, ϵ2 are given by (35)–(37), respectively. Then, there 
exists a minimum dwell-time τ > 0 such that tck+1 − tck ≥ τ  for 
all k ∈ N.

The proof Lemma  3 can be obtained by following a procedure 
similar to that in Espitia (2020, Theorem 1). In addition, we 
can obtain an expression for the minimum dwell-time as given 
below:

τ =
1
a
ln
(
1 +

aθσ

(aθ + θm)(1 − σ )

)
, (43)

a =1 + ϵ3 + η > 0. (44)

We establish the global exponential convergence of closed-
loop system (1)–(3), (4)–(6), (29), (31), (32) in the following 
proposition.
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Proposition 3.  Subject to Assumption  1, let η, θ > 0, σ ∈ (0, 1)
and the parameter θm, be selected such that 

θm = 2Deµ ℓ
λ2 , (45)

where

D =2Cq2, (46)

C >max

⎧⎨⎩ κ0

(µ − δ)r
,

κ1

1 − 4ρ2q2eµ

(
ℓ

λ1
+

ℓ
λ2

)
⎫⎬⎭ , (47)

µ ∈

(
0,

2λ1λ2

ℓ(λ1 + λ2)
ln
(

1
2|qρ|

))
, δ < µ, (48)

r =min
{

1
λ1

e−µ ℓ
λ1 ,

2q2

λ2

}
, (49)

and κ0, κ1 > 0 satisfy (42). Then, under the CETC triggering 
rule (39)–(41), the observer-based CETC closed-loop system (1)–(3), 
(4)–(6), (29), (31), (32) has a unique solution (u, v, û, v̂)T ∈ C0(R+

;

L2((0, ℓ);R4)), and the closed-loop system states globally exponen-
tially converge to 0 in the spatial L2 norm.

Proof.  Using Corollary  1 and Lemma  3, we can conclude that 
the closed-loop system (1)–(3), (4)–(6), (29), (31), (32), has a 
unique solution (u, v, û, v̂)T ∈ C0(R+

; L2((0, ℓ);R4)). Consider 
the following Lyapunov function for the systems (12)–(14) and 
(24)–(26), (33): 
W (t) = V1(t) + V2(t) − m(t), (50)

where

V1(t) =

∫ ℓ

0

(
A
λ1

α̃2(x, t)e−µ x
λ1 +

B
λ2

β̃2(x, t)eµ x
λ2

)
dx,

V2(t) =

∫ ℓ

0

(
C
λ1

α̂2(x, t)e−µ x
λ1 +

D
λ2

β̂2(x, t)eµ x
λ2

)
dx.

By selecting the values of A, B appropriately and D, C, µ as given 
in (46)–(48), we can show that Ẇ (t) ≤ −min

{
µ − δ −

κ0
Cr , η

}
W (t). Hence, it can be seen that the target systems globally 
exponentially converge to 0. Using the bounded invertibility of 
transformations (10), (11), (15), (16), (17), (18), (19), and (20), 
we can show that the observer-based CETC closed-loop system 
(1)–(3), (4)–(6), (29), (31), (32) globally exponentially converges 
to 0 in the spatial L2 norm. ■

Remark 1.  The variables θ and η are free design parameters that 
can be varied to tune the performance of the controller, in con-
trast to the CETC design in Espitia (2020), where these parameters 
are restricted. Also, as evident by the proof of Proposition  3, larger 
η, larger µ, and smaller δ would result in a higher convergence 
rate.

3. Periodic event-triggered control (PETC)

Unlike the CETC approach, in PETC, the triggering function 
Γ p(t) to be designed is only evaluated periodically. An increasing 
sequence of PETC times, Ip = {tpk }k∈N, at which the control input 
Up
k (t) is updated, is determined according to the following rule: 

Definition 2.  The increasing sequence of event times Ip =

{tpk }k∈N with tp0 = 0 is determined via to the following rule:
tpk+1 = inf{t ∈ R|t > tpk , Γ p(t) > 0, k ∈ N,

t = nh, n ∈ N, h > 0}, (51)

Γ p(t) :=
(
eah(θm + aθ ) − θm

)
d2(t) + am(t), (52)
5

where h > 0 is an appropriate sampling period to be chosen. 
Let η, θ > 0 be arbitrary parameters. The constants a and θm are 
chosen as in (44) and (45) respectively. The function d(t) is given 
by (30) and m(t) evolves according to (41) with m(0) = m0 <

0, m(tp
−

k ) = m(tpk ) = m(tp
+

k ) k ∈ N.

3.1. Sampling period selection and design of the triggering function

Let us first focus on the selection of the sampling period h > 0. 
Assume that triggering according to the PETC triggering rule (51), 
(52) ensures that the CETC triggering function Γ c(t) given by 
(40) satisfies Γ c(t) ≤ 0 for all t ∈ R+ along the PETC closed-
loop solution. Then, similarly from Lemma  2, it holds that m(t)
governed by (41) satisfies m(t) < 0 for all t ∈ R+. Let an event be 
triggered at t = tpk , then from (40), we see that Γ c(tpk ) = m(tpk ) <

0. Then, due to the existence of a minimum dwell-time, we know 
that Γ c(t) remains negative at least until t = tpk + τ . Therefore, 
let us select the sampling period h as 
0 < h ≤ τ . (53)

Let us now focus on the design of the periodic event-triggering 
function Γ p(t).

Proposition 4.  Consider the set of increasing event times Ip =

{tpk }k∈N with tp0 = 0 generated by the PETC triggering rule (51), 
(52) with the sampling period h > 0 chosen as in (53). Then, the 
CETC triggering function Γ c(t) given by (40) satisfies the following 
relation

Γ c(t) ≤
e−η(t−nh)

a

[(
ea(t−nh)(θm + aθ ) − θm

)
d2(nh)

+ am(nh)
]
, (54)

for all t ∈ [nh, (n + 1)h), n ∈ [tpk /h, t
p
k+1/h) ∩ N, k ∈ N where 

η, θ > 0 are free parameters. Constants a, θm, and κi for i = 0, 1, 2
satisfy (44), (45), and (42), respectively.

Proof.  Consider a time interval t ∈ [nh, (n + 1)h), n ∈

[tpk /h, t
p
k+1/h) ∩ N, k ∈ N, note that d(t), m(t), and Γ c(t) are 

continuous for all t ∈ (nh, (n+1)h). Taking the time derivative of 
(40) for t ∈ (nh, (n + 1)h), the following ODE holds:
Γ̇ c(t) = 2θd(t)ḋ(t) + ṁ(t).

Using Young’s inequality and (34), (41) we can derive the follow-
ing relation:

Γ̇ c(t) ≤

(
1 + ϵ3 +

θm

θ

)
θd2(t) − ηm(t)

+ (θϵ0 − κ0) ∥(α̂(·, t), β̂(·, t))T∥2

+ (θϵ1 − κ1) α̂2(ℓ, t) + (θϵ2 − κ2) β̃2(0, t).

Substituting for d2(t) using (40) and introducing ι(t) ≥ 0 we 
arrive at the following ODE:

Γ̇ c(t) =

(
1 + ϵ3 +

θm

θ

)
Γ c(t) −

(
a +

θm

θ

)
m(t)

− ι(t) + (θϵ0 − κ0) ∥(α̂(·, t), β̂(·, t))T∥2

+ (θϵ1 − κ1) α̂2(ℓ, t) + (θϵ2 − κ2) β̃2(0, t). (55)

Using (40) and (41), we obtain the following ODE
ṁ(t) = − κ0∥(α̂(·, t), β̂(·, t))T∥2

− κ1α̂
2(ℓ, t) − κ2β̃

2(0, t)

+
θm

θ
Γ c(t) −

(
η +

θm

θ

)
m(t). (56)
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B

-

Define the following matrices

z(t) =

(
Γ c(t)
m(t)

)
, A =

((
1 + ϵ3 +

θm
θ

) (
−a −

θm
θ

)
θm
θ

(
−η −

θm
θ

)) ,

(t) =

⎛⎝ (θϵ0 − κ0) ∥(α̂(·, t), β̂(·, t))T∥2

+ (θϵ1 − κ1) α̂2(ℓ, t) + (θϵ2 − κ2) β̃2(0, t) − ι(t)
κ0∥(α̂(·, t), β̂(·, t))T∥2

− κ1α̂
2(ℓ, t) − κ2β̃

2(0, t)

⎞⎠ ,

then from (55) and (56) we obtain 
ż(t) = Az(t) + B(t). (57)

The solution to (57) for all t ∈ [nh, (n+1)h), n ∈ [tpk /h, t
p
k+1/h)∩

N, k ∈ N is

z(t) = eA(t−nh)z(nh) +

∫ t

nh
eA(t−ξ )B(ξ )dξ .

Let C = (1 0). Since Γ c(t) = Cz(t), Γ c(t) can be calculated as

Γ c(t) = CeA(t−nh)z(nh) +

∫ t

nh
CeA(t−ξ )B(ξ )dξ .

Finding the eigenvalues and eigenvectors of A, we determine eA(t). 
Then, CeA(t−ξ )B(ξ ) can be determined to be

CeA(t−ξ )B(ξ ) =
e−η(t−ξ )

a

[
−

g(t − ξ )
θ

e−η(t−ξ )ι(ξ )

(g(t − ξ )ϵ0 − κ0a)∥(α̂(·, ξ ), β̂(·, ξ ))T∥2

+ (g(t − ξ )ϵ1 − κ1a)α̂2(ℓ, ξ ) + (g(t − ξ )ϵ2 − κ2a)β̃2(0, ξ )
]
,

where the increasing function g(t) > 0 is given by
g(t) = (eat (θm + aθ ) − θm).

Now, for nh ≤ ξ ≤ t ≤ (n+1)h, using (42) and (43), g(t−ξ )ϵi−κia
for i = 0, 1, 2 can be shown to satisfy
g(t−ξ )ϵi − κia ≤ g(h)ϵi − κia,

≤ϵi

[
eah (θm + aθ) −

(
θm +

aθ
1 − σ

)]
,

≤ϵi(θm + θa)(eah − eaτ ).

Since h ≤ τ , (eah − eaτ ) ≤ 0. Thus, it can be seen that g(t − ξ )ϵi −
κia ≤ 0 for i = 0, 1, 2. Therefore, we have that CeA(t−ξ )B(ξ ) ≤ 0
leading to the following inequality:
Γ c(t) ≤CeA(t−nh)z(nh)

≤
e−η(t−nh)

a

[(
θm

θ
(ea(t−nh)

− 1) + aea(t−nh)
)

Γ c(nh)

+

(
a +

θm

θ

)
(1 − ea(t−nh))m(nh)

]
.

Substituting for Γ c(nh) using (40), we obtain (54), which con-
cludes the proof.  ■

Finally, inspired by the relation (54), let us define the periodic 
event-triggering function Γ p(t) as in (52).

3.2. Convergence of the closed-loop system under PETC

Using the PETC triggering rule (51), (52), we establish the 
global exponential convergence of the observer-based PETC closed
loop system (1)–(3), (31), (4)–(6), (32) with the control input 
Up
k (t) given by (29). 

Lemma 4.  Under the PETC triggering rule (51), (52) with a sample 
period h chosen as in (53), the CETC triggering function Γ c(t) given 
by (40) and the dynamic variable m(t) governed by (41) satisfy 
Γ c(t) ≤ 0 and m(t) < 0 for all t ∈ R+.
6

Proof.  Assume that two successive events are triggered at t = tpk
and t = tpk+1, k ∈ N under the PETC triggering rule (51), (52) 
with a sampling period of h and m(tpk ) < 0. Since d(tpk ) = 0, 
we have from (40) that Γ c(tpk ) = m(tpk ) < 0 and from (52) 
that Γ p(tpk ) = am(tpk ) < 0. Due to the periodic nature of the 
triggering mechanism, we evaluate Γ p(t) at each t = nh, n ∈

[tpk /h, t
p
k+1/h) ∩ N and events are triggered only if Γ p(nh) > 0. 

Consider the inequality (54) when t ∈ [nh, (n+1)h). Since ea(t−nh)

is an increasing function of t, we have

Γ c(t) ≤
e−η(t−nh)

a

[(
eah (θm + aθ) − θm

)
d2(nh)

+ am(nh)
]

≤
e−η(t−nh)

a
Γ p(nh).

Therefore, Γ p(nh) ≤ 0 implies that Γ c(t) ≤ 0 for all t ∈

[nh, (n+1)h). Hence, if Γ p(t) ≤ 0 at a certain time, Γ c(t) remains 
non-positive at least until the next evaluation of the triggering 
function. Since the next time at which Γ p(t) > 0 is at t = tpk+1, 
we know that Γ c(t) ≤ 0 at least until t = tp

−

k+1. Therefore, 
from Lemma  2, m(t) < 0 for t ∈ [tpk , t

p
k+1) and by definition, 

m(tp
−

k+1) = m(tpk+1) = m(tp
+

k+1), leading to m(tpk+1) < 0. Since an 
event is triggered at t = tpk+1, d(t

p
k+1) = 0, resulting in Γ c(tpk+1) =

m(tpk+1) < 0, Γ p(tpk+1) = am(tpk+1) < 0. Applying this reasoning 
for all intervals in Ip and noting that m0 < 0, we can conclude 
that Γ c(t) < 0 and m(t) < 0 for all t ∈ R+.  ■

Subsequently, we establish the global exponential conver-
gence of the closed-loop system in the following theorem. 

Theorem 1.  Subject to Assumption  1, let η, θ > 0, σ ∈ (0, 1) and 
the parameters a, θm be determined as in (44), (45) respectively. 
Then, under the PETC triggering rule (51), (52) with the sampling 
period h > 0 chosen as in (53), the observer-based PETC closed-
loop system (1)–(3), (4)–(6), (29), (31), (32) has a unique solution 
(u, v, û, v̂)T ∈ C0(R+

; L2((0, ℓ);R4)), and the closed-loop system 
states globally exponentially converge to 0 in the spatial L2 norm.

Proof.  Using Corollary  1 and noting that the triggering func-
tion is evaluated periodically with a period h, which makes the 
closed-loop system inherently Zeno-free, we can conclude that 
the closed-loop system (1)–(3), (4)–(6), (29), (31), (32) has a 
unique solution (u, v, û, v̂)T ∈ C0(R+

; L2((0, ℓ);R4)). Following 
Lemma  4, we know that Γ c(t) ≤ 0 and m(t) < 0 for all 
t ∈ R+ along the PETC closed-loop solution. Therefore, using 
the same arguments used in Proposition  3, we can conclude that 
the closed-loop system (1)–(3), (4)–(6), (29), (31), (32), globally 
exponentially converges to 0 in the spatial L2 norm.  ■

4. Self-triggered control (STC)

In this section, we propose an observer-based STC approach. 
Unlike the previously proposed CETC and PETC methods, which 
require evaluating a triggering function to update the control 
input, the STC approach determines the next event time at the 
current event time. It does so by using continuously available 
measurements and predicting an upper bound of the closed-loop 
system state. Consequently, STC proactively determines event 
times, whereas both CETC and PETC reactively determine event 
times.

Before proceeding with the design, we assume the following 
regarding the initial data. 

Assumption 2.  The initial conditions of the observer error 
system given by (7)–(9) satisfy
ũ2(x, 0) ≤ φ , ṽ2(x, 0) ≤ φ ,
u v
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̇̄V
for all x ∈ [0, ℓ] for some known arbitrary constants φu, φv > 0.

The increasing sequence of event times Is = {tsk}k∈N at which 
the control input is updated is determined by the following rule. 

Definition 3.  The increasing sequence of event times Is = {tsk}k∈N
with ts0 = 0 is determined via to the following rule: 
tsk+1 = tsk + G(tsk), (58)

where

G(t) =max{τ , Ḡ(t)}, (59)

Ḡ(t) =
1

ϱ + η
ln
(

θmF(t) − m(t)(ϱ + η)
F(t)(θ (ϱ + η) + θm)

)
, (60)

F(t) =rd

⎛⎝2V̄2(t) +
2rdD̄e

µ̄ ℓ
λ2 V̄2(t) + φ(t)

ϱ

⎞⎠ , (61)

V̄2(t) =

∫ ℓ

0

(
C̄
λ1

α̂2(x, t)e−µ̄ x
λ1 +

D̄
λ2

eµ̄ x
λ2 β̂2(x, t)

)
dx, (62)

φ(t) =(2C̄q2 + P̄V2 )φ0(t), C̄ = 1, D̄ = 2q2, (63)

µ̄ =
2λ1λ2

ℓ(λ1 + λ2)
ln
(

1
2|qρ|

)
, (64)

φ0(t) =

{
max{ρ2φα, φβ} t ≤

ℓ
λ1

+
ℓ
λ2

0 t > ℓ
λ1

+
ℓ
λ2

,
(65)

P̄V2 =δ̄

∫ ℓ

0

(
C̄
λ1

e−µ̄ x
λ1 p̄21(x) +

D̄
λ2

eµ̄ x
λ2 p̄22(x)

)
dx, (66)

ϱ =δ̄ − µ̄ + 2D̄eµ̄ ℓ
λ2 , (67)

rd =

4max
{∫ ℓ

0 (N
α(ξ ))2dξ,

∫ ℓ

0 (N
β (ξ ))2dξ

}
min

{
C̄e

−µ̄ ℓ
λ1

λ1
, D̄

λ2

} , (68)

with δ̄ > 0 chosen such that ϱ > 0 and φα and φβ being known 
constants. Let η, θ > 0 be arbitrary parameters. Furthermore θm
is given by (45). The dynamic variable m(t) evolves according to 
(41) with m(0) = m0 < 0, m(ts

−

k ) = m(tsk) = m(ts
+

k ) k ∈ N.

4.1. Design of the positive function G(t)

The function G(t) is determined such that updating control 
inputs at events generated by the STC triggering rule (58)–(68) 
ensures the CETC triggering function Γ c(t) given by (40) satisfies 
Γ c(t) ≤ 0 for all t ∈ R+. Towards this, we first derive upper 
bounds for the variables d2(t) and m(t) between two consecutive 
event times tsk and tsk+1. 

Lemma 5.  For d(t) given by (30), and for m(t) satisfying (41) with 
m(0) = m0 < 0, m(ts

−

k ) = m(tsk) = m(ts
+

k ) k ∈ N, the following 
inequalities hold:
d2(t) <F(tsk)e

ϱ(t−tsk), (69)

m(t) <e−η(t−tsk)m(tsk)

+
θmF(tsk)e

−η(t−tsk)

ϱ + η

(
e(ϱ+η)(t−tsk) − 1

)
, (70)

for all t ∈ [tsk, t
s
k+1), k ∈ N, with ϱ > 0 in (67).

Proof.  Differentiating the function (62) with respect to time for 
t ∈ [tsk, t

s
k+1), k ∈ N and using (24)–(26), (33), the following 

expression can be obtained:

2(t) =2β̃(0, t)
∫ ℓ

(
C̄

p̄1(x)e
−µ̄ x

λ1 +
D̄

p̄2(x)e
µ̄ x

λ2

)
dx
0 λ1 λ2

7

− µ̄V̄2(t) − C̄
(
e−µ̄ ℓ

λ1 α̂2(ℓ, t) − α̂2(0, t)
)

+ D̄
(
eµ̄ ℓ

λ2 (ρα̂(ℓ, t) + d(t))2 − β̂2(0, t)
)

.

Then, applying Young’s inequality, we can obtain the following 
where δ̄ > 0 and P̄V2  is given in (66):
̇̄V2(t) ≤ (δ̄ − µ̄)V̄2(t) + 2D̄eµ̄ ℓ

λ2 d2(t)

+

(
−C̄e−µ̄ ℓ

λ2 + 2ρ2D̄eµ̄ ℓ
λ1

)
α̂2(ℓ, t) + β̃2(0, t)P̄V2

+
(
2C̄q2 − D̄

)
β̂2(0, t) + 2C̄q2β̃2(0, t).

Selecting µ̄ as defined in (64) along with the parameters C̄ , D̄ as 
given in (63), we obtain the following inequality: 
̇̄V2(t) ≤ (δ̄ − µ̄)V̄2(t) + 2D̄eµ̄ ℓ

λ2 d2(t) + β̃2(0, t)(2C̄q + P̄V2 ). (71)

To obtain an upper bound for the solution of V̄2(t) using (71), we 
derive the following inequalities for d2(t) and β̃2(0, t).

Consider d(t) given by (30). Using Young’s inequality and 
Cauchy–Schwarz inequality, the following approximation can be 
obtained for d2(t):

d2(t) ≤4max
{∫ ℓ

0
(Nα(ξ ))2dξ,

∫ ℓ

0
(Nβ (ξ ))2dξ

}
×
(
∥(α̂(·, t), β̂(·, t))T∥2

+ ∥(α̂(·, tsk), β̂(·, t
s
k))

T
∥
2),

Noting that

min

⎧⎨⎩ C̄e−µ̄ ℓ
λ1

λ1
,
D̄
λ2

⎫⎬⎭ ∥(α̂(·, t), β̂(·, t))T∥2
≤ V̄2(t),

the following holds for d2(t): 
d2(t) ≤ rd(V̄ (tsk) + V̄ (t)), (72)

where rd is given in (68). Additionally considering the dynamics 
of the target system (12)–(14), the characteristic solution of the 
system can be obtained as

α̃(x, t) =

{
0 x ≤ λ1t
α̃(x − λ1t, 0) x > λ1t,

(73)

β̃(x, t) =

{
β̃(x + λ2t, 0) x ≤ ℓ − λ2t

ρα̃

(
ℓ +

λ1
λ2
(ℓ − x) − λ1t, 0

)
x > ℓ − λ2t.

(74)

From Assumption  2, using the transformations (15), (16), Young’s 
inequality, and Cauchy–Schwarz inequality, the following in-
equality can be obtained: α̃2(x, 0) ≤ φα, β̃2(x, 0) ≤ φβ , where 
φα and φβ are given by

φα =3 max
x∈[0,ℓ]

{
φu + φux

∫ x

0
(Ruu(x, ξ ))2dξ

+ φvx
∫ x

0
(Ruv(x, ξ ))2dξ

}
,

φβ =3 max
x∈[0,ℓ]

{
φv + φux

∫ x

0
(Rvu(x, ξ ))2dξ

+ φvx
∫ x

0
(Rvv(x, ξ ))2dξ

}
.

From the solution of α̃(x, t) and β̃(x, t) given by (73), (74), it is 
clear that for t ≥

ℓ
λ1

+
ℓ
λ2
, α̃(x, t) = 0 and β̃(x, t) = 0. Also, 

β̃2(0, t) ≤ max{ρ2φα, φβ} for t < ℓ
λ1

+
ℓ
λ2
. Hence β̃(0, t) is 

bounded for all t ≥ 0 as 
β̃2(0, t) ≤ φ (t). (75)
0
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Since the φ0(t) given by (65) is a non-increasing function of t
and since t ∈ [tsk, t

s
k+1), (75) still holds for R.H.S. at t = tsk. 

Substituting d2(t) from (72) and β̃2(0, t) from (75) to (71) and 
at φ0(t) = φ0(tsk), we obtain the following expression:
̇̄V2(t) ≤ ϱV̄2(t) + 2rdD̄e

µ̄ ℓ
λ2 V̄2(tsk) + φ(tsk),

where ϱ and φ(t) are defined in (63) and (67) respectively. Using 
the comparison principle, one gets the following estimate: 

V̄2(t) <

⎛⎝V̄2(tsk) +
2rdD̄e

µ̄ ℓ
λ2 V̄2(tsk) + φ(tsk)

ϱ

⎞⎠ eϱ(t−tsk). (76)

Using (72) and (76), we derive the estimate (69). Next, using (41) 
and (69), the following inequality can be derived
ṁ(t) < −ηm(t) + θmF(tsk)e

ϱ(t−tsk).

Using the comparison principle, the estimate (70) can be ob-
tained.  ■

Consider the time period t ∈ [tsk, t
s
k+1), k ∈ N. Assume that 

m(tsk) < 0. Since an event is triggered at t = tsk, we know that 
d(tsk) = 0, then, from (40), we know that Γ c(tsk) = m(tsk) < 0. 
Using (40), (69), and (70), we obtain
Γ c(t) <θF(tsk)e

ϱ(t−tsk) + e−η(t−tsk)m(tsk)

+
θmF(tsk)e

−η(t−tsk)

ϱ + η

(
e(ϱ+η)(t−tsk) − 1

)
. (77)

R.H.S. of (77) is an increasing function of t . Assume that there 
exists a time ts∗k > tsk such that the following expression hold:

θF(tsk)e
ϱ(tsk

∗
−tsk) + e−η(ts

∗

k −tsk)m(tsk)

+
θmF(tsk)e

−η(tsk
∗
−tsk)

ϱ + η

(
e(ϱ+η)(ts

∗

k −tsk) − 1
)

= 0.

Solving for ts∗k , we get ts∗k − tsk = Ḡ(tsk) where Ḡ(t) is given by (60). 
Since, ts∗k − tsk > τ  is not guaranteed to be true, we define G(t) as 
in (59).

4.2. Convergence of the closed-loop system under STC

Under the STC triggering rule (58)–(68), we establish global 
exponential convergence of the observer-based system (1)–(3), 
(31), (4)–(6), (32) with the control input U s

k(t) given in (29). Prior 
to that, we present the following result that is crucial for proving 
the main result presented in Theorem  2. 

Lemma 6.  Under the STC triggering rule (58)–(68), the CETC 
triggering function Γ c(t) given by (40) and the dynamic variable 
m(t) governed by (41) satisfy Γ c(t) ≤ 0 and m(t) < 0 for all 
t ∈ R+.

Proof.  Assume that two successive events are triggered at t = tsk
and t = tsk+1, k ∈ N under the STC triggering rule (58)–(68) 
and m(tsk) < 0. Since d(tsk) = 0, from (40), Γ c(tsk) = m(tsk) < 0. 
According to the definition of the STC triggering rule, we have 
that tsk+1 = tsk+τ  if Ḡ(tsk) ≤ τ  or tsk+1 = tsk+Ḡ(tsk) if Ḡ(tsk) > τ . Since 
τ  defined in (43) is the minimum dwell-time, if tsk+1 = tsk + τ , 
we know that Γ c(t) remains non positive until t = ts

−

k+1. Next 
consider the instance where tsk+1 = tsk + Ḡ(tsk). From (77), for 
t = tsk+1, Ḡ(tsk) is such that

Γ c(tsk+1) < θF(tsk)e
ϱḠ(tsk) + e−ηḠ(tsk)m(tsk)

+
θmF(tsk)e

−η(Ḡ(tsk)) (
e(ϱ+η)(Ḡ(tsk)) − 1

)
= 0,
ϱ + η

8

therefore, Γ c(tsk+1) < 0, and since the upper bound for Γ c(t) in 
(77) is an increasing function of t , Γ c(t) < 0 for all t ∈ [tsk, t

s
k+1). 

Therefore, for the STC condition given in (58)–(68), Γ c(t) remains 
non-positive for t ∈ [tsk, t

s
k+1), then similarly from Lemma  2, we 

can conclude that m(t) < 0 for t ∈ [tsk, t
s
k+1). By definition, 

m(ts
−

k+1) = m(tsk+1) = m(ts
+

k+1) leading to m(tsk+1) < 0. Since an 
event is triggered at t = tsk+1, d(tsk+1) = 0, resulting in Γ c(tsk+1) =

m(tsk+1) < 0. Applying this reasoning for all intervals in Is and 
noting that m0 < 0, we can conclude that Γ c(t) < 0 and m(t) < 0
for all t ∈ R+.  ■

Note that in light of the results of Lemma  6, Ḡ(t) in (60) exist 
for all t ∈ Is. Subsequently, we establish the global exponential 
convergence of the closed-loop system in the following theorem. 

Theorem 2.  Subject to Assumption  1, let η, θ > 0, σ ∈ (0, 1)
and the parameters τ , θm be defined as in (43), (45) respectively. 
Then, under the STC triggering rule (58)–(68), the observer-based 
STC closed-loop system (1)–(3), (4)–(6), (29), (31), (32) has a unique 
solution (u, v, û, v̂)T ∈ C0(R+

; L2((0, ℓ);R4)), and the closed-loop 
system states exponentially converge to 0 in the spatial L2 norm.

Proof.  Using Corollary  1 and noting that according to the trig-
gering rule (58)–(68) the time between two events is at least 
τ , which excludes Zeno behavior, we can conclude that the 
system (1)–(3), (4)–(6), (29), (31), (32) has a unique solution 
(u, v, û, v̂)T ∈ C0(R+

; L2((0, ℓ);R4)). Following Lemma  6, we 
know that Γ c(t) ≤ 0 and m(t) < 0 for all t ∈ R+. Therefore, 
using the same arguments used in Proposition  3, we can conclude 
that the closed-loop system (1)–(3), (4)–(6), (29), (31), (32), 
exponentially converges to 0 in the spatial L2 norm.  ■

5. Boundary control of shallow water wave equations

5.1. The Saint-Venant equations

The Saint-Venant model for a canal breach of unit width, 
which expresses the conservation of mass and momentum as-
suming that the depth of the incompressible flow is much smaller 
than the horizontal length scale, is given below:

∂tH + ∂x(HV ) = 0, (78)

∂tV + ∂x

(
V 2

2
+ gH

)
+

(
Cf V 2

H
− gSb

)
= 0, (79)

where H(x, t) represents the water depth, V (x, t) is the horizontal 
water velocity, and g is the constant acceleration of gravity. The 
term Sb is the constant bottom slope of the channel bed. The 
constant friction coefficient Cf  plays a central role in modulating 
the fluid’s behavior under gravitational influence and resistance 
posed by the channel. Assume that the flow rate upstream is a 
known constant Q0, and an underflow sluice gate is used at the 
downstream boundary, hence we obtain the following boundary 
conditions:

H(0, t)V (0, t) =Q0, (80)

H(ℓ, t)V (ℓ, t) =kG
√
2gUℓ(t)

√
H(ℓ, t) − Hℓ, (81)

where kG represents the constant discharge coefficient of the 
gate, Hℓ is the constant water level beyond the gate, and Uℓ

is the gate opening height which can be controlled to regulate 
water dynamics in the canal. The constant equilibrium states of 
H(x, t) and V (x, t) are denoted by Heq and Veq, respectively. For 
the physical stationary states of interest, it is assumed that both 
Heq and Veq are positive. Let the following assumptions hold for 
the system. 
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Assumption 3.  The constant bottom slope Sb and the constant 
equilibrium states Heq, Veq are such that Sb =

Cf V2
eq

gHeq
.

Assumption 4.  The steady states of the system, particularly 
in scenarios involving navigable rivers and fluvial regimes, the 
following subcritical condition holds: gHeq > V 2

eq.

Consider the following coordinate transformation: (
u
v

)
=

(
e

γ1
λ1

x 0

0 e−
γ2
λ2

x

)⎛⎝ √
g

Heq
1

−

√
g

Heq
1

⎞⎠(H − Heq
V − Veq

)
. (82)

Subsequently, we linearize the system (78)–(81) around the equi-
librium point and use the transformation (82) with known con-
stants γ1 and γ2 to represent the linearized system decoupled 
along its characteristic velocities λ1 = Veq +

√
gHeq and −λ2 =

Veq −
√
gHeq. Under Assumption  4, we observe that λ1, λ2 > 0. 

This leads to a system identical to (1)–(3) with known c1(x), c2(x), 
q, and ρ (see Somathilake et al., 2024).

5.2. Numerical simulations

The simulations for CTC, CETC, PETC, and STC detailed in 
Section 2–4 respectively are carried out for the one-dimensional 
shallow water equations given above. The model parameters are 
defined as g = 9.81 m/s2, ℓ = 10 m, Cf = 0.2, Heq = 2 m, 
Veq = 1 m/s, and Hℓ = 0.1 m such that the boundary conditions 
satisfy Assumption  1. In addition, we define kG = 0.6. The 
initial conditions for the system are selected such that H(x, 0) =

Heq − sin(π x
ℓ
), V (x, 0) = Veq + 0.5 sin(3π x

ℓ
) along with the initial 

conditions of the observer states in the characteristic coordinates 
as û(x, 0) = 0, v̂(x, 0) = 0. The bounds in Assumption  2 are taken 
as φu = 8.6872 and φv = 3.1664.

Subsequently, consider the selection of the event-triggering 
parameters. Select µ = 0.016 such that (48) is satisfied. The 
tuning parameters δ < µ, m0 < 0, η > 0, θ > 0, and σ ∈

(0, 1) are selected as 0.014, −1, 0.001, 1, and 0.99 respectively. 
Thereafter we select C = 413.4211 from (47) and δ̄ = 10−4

such that ϱ > 0. We obtain a minimum dwell-time of τ =

0.13323 s and the sampling period 0 < h ≤ τ  in the PETC 
design is selected as h = 0.13 s. The time and spatial step 
sizes used in PDE discretization are ∆t = 0.0001 s and ∆x =

0.05 m, respectively. The kernel PDEs are solved using the method 
proposed in Anfinsen and Aamo (2019) [Appendix F].

The variation of the L2 norms of the characteristic coordi-
nates ∥(u(·, t), v(·, t))T∥, over time is depicted in Fig.  1(a) for the 
open-loop (OL) system and under the CTC, CETC, PETC, and STC 
mechanisms. The corresponding control inputs for the triggering 
mechanisms are shown in Fig.  1(b). The dwell-times for CETC 
and PETC are shown in Fig.  2(a), and the dwell-times for STC 
are shown in Fig.  2(b). The dwell-times for STC are much shorter 
than the dwell-times for CETC and PETC because, unlike CETC 
and PETC, the STC approach proactively computes the next event 
time by predicting the state evolution. This results in a more 
conservative sampling schedule. Due to frequent control updates, 
the closed-loop signals under STC follow a trajectory closer to 
those under CTC, as seen in Fig.  1(a). In contrast, CETC and PETC 
approaches are less conservative in determining the triggering 
times; therefore, the norms converge to zero over a longer period 
but with less frequent control updates.

6. Concluding remarks

This article has presented an anti-collocated observer-based 
periodic event-triggered and self-triggered boundary control for a 
9

Fig. 1. L2 norm of characteristics and control inputs.

Fig. 2. Dwell times under event-triggered strategies.

class of 2 × 2 hyperbolic PDEs with reflection terms at the bound-
aries. The proposed PETC approach evaluates an appropriately 
designed function periodically to determine event times and is 
equipped with an explicitly defined upper bound for the sampling 
period. In contrast, the STC approach employs a positively lower-
bounded function, which is evaluated at an event to determine 
the next event time. Both approaches eliminate the need for con-
tinuous monitoring of a triggering function required in the CETC 
approach while still preserving global exponential convergence 
to zero in the spatial L2 norm. We have established the well-
posedness of the closed-loop system under the proposed control 
strategies. The proposed control strategies have been employed to 
control the linearized Saint-Venant equations, which describe the 
flow of water in an open channel with a constant inflow of water 
at the upstream boundary and a sluice gate at the downstream 
boundary. Since the control input is transmitted only at event 
times, the communication bandwidth is utilized effectively and 
can be freed for other tasks.
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