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Abstract—For stabilizing stop-and-go oscillations in traf-
fic flow by actuating a variable speed limit (VSL) at a
downstream boundary of a freeway segment, we introduce
event-triggered partial differential equation (PDE) backstep-
ping designs employing the recent concept of performance-
barrier event-triggered control (P-ETC). Our design is for
linearized hyperbolic Aw–Rascle–Zhang (ARZ) PDEs gov-
erning traffic velocity and density. Compared to contin-
uous feedback, ETC provides a piecewise-constant VSL
commands—more likely to be obeyed by human drivers.
Unlike the existing “regular” ETC (R-ETC), which enforces
conservatively a strict decrease of a Lyapunov function, our
performance-barrier (P-ETC) approach permits an increase,
as long as the Lyapunov function remains below a perfor-
mance barrier, resulting in fewer control updates than R-
ETC. To relieve VSL from continuously monitoring the trig-
gering function, we also develop periodic event-triggered
(PETC) and self-triggered (STC) versions of both R-ETC and
P-ETC. These are referred to as R/P-PETC and R/P-STC,
respectively, and we show that they both guarantee Zeno-
free behavior and exponential convergence in the spatial
L2 norm. With comparative simulations, we illustrate the
benefits of the performance-barrier designs through traf-
fic metrics (driver comfort, safety, travel time, fuel con-
sumption). The proposed algorithms reduce discomfort
nearly in half relative to driver behavior without VSL,
while tripling the driver safety, measured by the average
dwell time, relative to the R-ETC frequent-switching VSL
schedule.

Index Terms—ARZ PDEs, backstepping, event-triggered
control, performance barrier, periodic event-triggered con-
trol, self-triggered control, traffic flow.
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I. INTRODUCTION

A. Boundary Control of ARZ Traffic Model: An
Embodiment of Coupled Hyperbolic partial differential
equation (PDE) Systems

TRAFFIC congestion refers to the situation where the num-
ber of vehicles on the road exceeds its effective capacity.

This occurrence leads to major setbacks in economic develop-
ment, primarily due to the time lost by drivers, unproductive fuel
consumption, and excess of carbon dioxide (CO2) emissions,
among other contributing factors. In congested freeways, a
common sight is the “stop-and-go” phenomenon, where vehicles
are frequently forced to come to a halt due to heavy traffic,
leading to hazardous and uncomfortable driving conditions.
Various macroscopic models have been conceived to enhance
understanding of traffic flow dynamics. The controlling of traf-
fic systems uses ramp metering to regulate the on-ramp flow
rate by traffic light and varying speed limit (VSL) actuators.
Aw–Rascle–Zhang (ARZ) [1], first-order Lighthill and Whitham
and Richards [43] as well as the second-order Payne–Whitham
(PW) model [25] are useful models that have been proven to
adequately serve control goals. The ARZ model has the advan-
tages of 1) successfully capturing the anisotropic dynamics of
the traffic flow given the fact that drivers mainly react to up
front traffic conditions; 2) being physically reasonable to avoid
backward-propagating traffic; and 3) reflecting accurately the
stop-and-go-like instabilities.

Recent control-oriented results that relate to a rich set of ARZ
traffic congestion models have shown promise in enhancing
traffic management [47]. These findings expand on an early PDE
backstepping control design [36] for 2 × 2 linear hyperbolic
systems in the canonical setting. The stabilization of the PDE
model of traffic systems has seen other advancements, partic-
ularly through the application of Lyapunov methods. Matrix
inequality and gain conditions that ensure exponential stability
when employing proportional (P) or proportional–integral (PI)
boundary feedback control laws resulting from a Lyapunov
analysis were derived in [50] and [34], [51], respectively. Stud-
ies have addressed the challenges posed by interesting traf-
fic scenarios, which encompass interconnected highways [49],
integration of adaptive cruise control-equipped vehicles [4],
traffic systems featuring connected/automated vehicles [26], or
stabilization of moving shockwaves [2], [45]. From an optimal
control perspective where minimizing the total traveling time is
the objective function, PDE models of traffic systems have led to
several contributions [3], [15]. Finally, exponentially stabilizing
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controllers for nonlinear hyperbolic traffic flow systems were
recently developed in [18] and [21].

B. Sampled-Data and Event-Based Control of PDE
Systems

Despite rich literature on boundary control of the ARZ traf-
fic model, it remains evident that the assumption of drivers
responding promptly to a continuously updating advisory speed
is not realistic. An immediate workaround is discretizing the
continuous-time control law and implementing it as sampled-
data control in a zero-order hold fashion. However, while a
lower sampling rate of discretization is more realistic for drivers
to adhere to the advisory speed, there is a caveat: the stabil-
ity or convergence properties ensured by the continuous-time
control may no longer be valid. As a result, it is crucial to
establish the theoretical maximum allowable sampling interval
of sampling schedules that maintain the desired closed-loop
system properties. This upper limit must be determined based
on worst-case scenarios, regardless of how rare or infrequent
they might be. Consequently, the sampling schedules usually
need to be chosen conservatively. Event-triggered control (ETC)
provides a systematic solution to tackle the conservativeness of
sampled-data control by bringing feedback into control update
tasks. The control input is updated only when triggered by an
appropriate event triggering mechanism based on system states
and is held constant between events. This approach removes the
need to confine the sampling period to a worst-case value, al-
lowing for fewer control updates while preserving a satisfactory
closed-loop system performance.

In recent times, progress have been made in the domain of
sampled-data control and ETC for both parabolic and hyperbolic
PDE systems. For parabolic PDEs, several key contributions
in sampled-data control can be highlighted by [12], [20], and
[22], and [10], [23], [31], [32], [28], and [39], in the realm
of ETC for parabolic PDEs. Conversely, for hyperbolic PDEs,
sampled-data control was extensively studied in papers, such
as [5], [19], and [42]. The area of ETC of hyperbolic systems
ws well-covered by [6], [7], [8], [9], and [40]. Among these
results, only the authors in [6] dealt with nonlinear hyperbolic
systems. Our contribution advances several early studies in the
field including [7], [8], and [11]. Espitia et al. [11] elucidated the
design of an ETC, utilizing VSL to suppress stop-and-go traffic
oscillations. Espitia et al. [8] proposed an observer-based ETC
that simultaneously stabilizes the traffic flow on two connected
roads. Further, Espitia [7] focused on ETC for linear 2 × 2
hyperbolic systems, which can be regarded as a generalization
of the linearized ARZ model. The studies in [7], [8], [9], [11],
[23], [28], [31], [32], [39], and [40], spanning both parabolic
and hyperbolic PDEs, are based on dynamic event-triggering
mechanisms first introduced in the seminal work [13] for systems
described by ordinary differential equations.

One limitation of ETC strategies is that they require con-
tinuous monitoring of triggering functions, impeding digital
implementation. We use the term continuous-time ETC (CETC)
to refer to these strategies. One solution is to check the event-
triggering function periodically. This approach is commonly
referred to as periodic ETC (PETC) [16], where the triggering
function is evaluated at regular time intervals. Although the trig-
gering function is checked periodically, the control input is still
updated aperiodically, coinciding with events. An alternative

solution is self-triggered control (STC) [17], which predicts the
next event time at the current event time, thereby eliminating the
need for continuous monitoring of event-triggering functions.
Both PETC and STC maintain the resource efficiency of CETC,
as control updates are made aperiodically and exclusively at
event times. In addition, these strategies are amenable to digital
implementations. In the past few years, quite interesting studies
have been conducted on both PETC [16], [41] and STC [17],
[44] for ODE systems. To the best of our knowledge, studies
devoted to PETC and STC strategies for infinite-dimensional
systems include [27], [29], [30], [37], [38]. However, none of
these studies address coupled hyperbolic PDEs like the ARZ
model.

C. Results

Leveraging the recently introduced performance-barrier-
based ETC (P-ETC) for nonlinear ODEs [24] and its adaptation
to boundary control of a class of parabolic PDEs [30], our
work applies P-ETC to VSL boundary control of the linearized
inhomogeneous ARZ model. This approach results in substan-
tially longer intervals between events (dwell-times) compared to
the dynamic ETC strategies [9], [11] previously applied to the
linearized ARZ model.

The triggering mechanisms discussed in [9] and [11] enforce
a monotonic decrease in the closed-loop system’s Lyapunov
function. We classify these strategies at a broader level as regular
ETC (R-ETC), distinguishing them from the P-ETC introduced
in the present contribution. The monotonic decrease of the
Lyapunov function is achieved by ensuring its time derivative
remains strictly negative. This approach certifies that the Lya-
punov function decreases faster than a specific exponentially
decaying signal, which depends on initial data and is known
as the performance-barrier. Drawing on previous research [24]
and [30], allowing deviations from a monotonically decreasing
Lyapunov function, while still adhering to the performance bar-
rier, might prolong the duration between events. To enable this
leeway in the Lyapunov function’s behavior, we incorporate the
so-called performance residual into the event-triggering mech-
anism. This residual is defined as the difference between the
performance barrier and the Lyapunov function. Consequently,
by design, the P-ETC allows for longer dwell-times in any
given state, compared to the R-ETC. Notably, this is achieved
without inducing Zeno behavior in the closed-loop system, while
still maintaining adherence to the performance barrier, leading
to the exponential convergence of the system states to zero
in the spatial L2 norm. Since the triggering function requires
continuous monitoring in order to detect events, we refer to this
strategy specifically as P-CETC. For similar reasons, we refer
to the strategies in [9] and [11] as R-CETC.

Building upon the techniques introduced in [29] for parabolic
PDEs, we further aim to circumvent the need for continuous
monitoring of the triggering functions in the R-CETC and
P-CETC. To achieve this, we extend these methods to PETC
and STC, resulting in what we refer to as R- and P-PETC and
R- and P-STC, respectively. Both R-PETC and P-PETC employ
periodic event-triggering functions, which are established by
deriving explicit upper bounds on the underlying continuous-
time event-triggering functions. Since the triggering functions
are evaluated periodically, Zeno behavior is inherently absent
in both R-PETC and P-PETC. In the case of STC, we develop
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the R- and P-STC by designing state dependent functions with
uniform and positive lower bounds, which when evaluated at the
current control update time produces the waiting time until the
next control update. These functions are designed via obtaining
upper bounds on the variables that constitute the R- and P-CETC
event-triggering functions. Both R-STC and P- STC are also
inherently Zeno-free, since they maintain a uniform, positive
lower bound for dwell-times. The R-PETC and R-STC force
the Lyapunov function to strictly decrease along the closed-loop
system solution, while the P-PETC and P-STC permit occasional
increases in the Lyapunov function, as long as it stays below the
established performance barrier, resulting in longer dwell-times
between events compared to their regular counterparts. All the
introduced PETC and STC strategies guarantee the exponential
convergence of the closed-loop system states to zero in the
spatial L2 norm.

The sparsity of P-ETC VSL updates, owing to longer dwell-
times compared to R-ETC updates can lead to improved driving
safety. Over a certain period, when the VSL is updated less
frequently, fewer drivers are distracted by changes in the VSL
while passing through the VSL zone after having already ad-
justed their speed once. Distracting drivers from tasks critical
for safe driving to focus on a competing activity may result
in insufficient or no attention being paid to essential driving
activities, as noted in [33]. Safe driving involves maintaining
a safe distance from the vehicle ahead, and in this context, a
competing activity would involve reacting to the changing VSL.
If the VSL changes frequently, drivers might either disregard the
VSL suggestions, leading to stop-and-go oscillations and hence,
an uncomfortable driving experience among other negative out-
comes, or compromise their safety by focusing on frequent
speed adjustments instead of maintaining safe distances between
vehicles. However, P-ETC achieves three times longer average
dwell times than R-ETC, thereby providing VSL schedules that
drivers can adhere to without compromising safety, while also
reducing discomfort nearly in half compared to driver behavior
without VSL.

D. Contributions

Major contributions:
1) Design of P-ETC for boundary control of the linearized

ARZ model, leading to sparser control updates compared
to the class of ETC strategies [9] and [11] applied to the
linearized ARZ model.

2) The first PETC and STC approach for coupled lin-
ear hyperbolic PDEs, specifically extending P-CETC to
P-PETC and P-STC to avoid continuous monitoring of
the P-CETC event-triggering function required for event
detection. None of the prior works [27], [29], [30], [37],
[38] have dealt with PETC and STC of coupled PDEs.

3) Demonstration that P-ETC enables a tradeoff between the
level of safety and driver comfort in traffic management
through the tuning of a parameter c ≥ 0, referred to as the
resource-aware parameter.

Other contributions:
1) Extension of the R-CETC [9] and [11] to R-PETC and

R-STC to avoid continuous monitoring of the R-CETC
event-triggering function.

Fig. 1. Interrelation among various technical and principal results in
the article.

The interrelation among various technical and principal re-
sults in the article are depicted in Fig. 1.

E. Notation

R+ is the positive real line while N is the set of natural
numbers. Let α : [0, �]× R+ → R be given. α[t] denotes the
profile of α at certain t ≥ 0, i.e., (α[t])(x) = α(x, t), for all
x ∈ [0, �]. The set of all functions g : [0, �] → Rn such that∫ �

0 g(x)T g(x)dx < ∞ is denoted by L2([0, �],Rn). Given a
topological set S, and an interval I ⊆ R, the set C0(I;S) is the
set of continuous functions g : I → S. Variables and functions
related to regular ETCs are denoted with a superscript r while
those of performance-barrier ETCs are denoted with p.

F. Organization

The rest of this article is organized as follows: Section II intro-
duces the inhomogeneous ARZ model alongside its continuous-
time control and emulation. Section III details the regular ETC
(R-ETC), consisting of preliminary R-CETC, and the newly
developed R-PETC and R-STC. In Section IV, the performance-
barrier ETC (P-ETC), including P-CETC, P-PETC, and P-STC,
is discussed. Simulations are presented in Section V. Finally,
Section VI concludes this article.

II. CONTINUOUS-TIME CONTROL AND EMULATION

In this section, we briefly present the ARZ model under
continuous-time PDE backstepping control. This is followed by
its emulation for ETC.

A. Aw–Rascle–Zhang (ARZ) Model

The inhomogeneous ARZ model is a second-order nonlinear
hyperbolic PDE system that describes the relationship between
traffic density ρ(x, t) and velocity v(x, t) as given by

∂tρ+ ∂x(ρv) = 0 (1)

∂tv + (v − ρp′(ρ)) ∂xv =
V (ρ)− v

τ
. (2)
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Here, the term p(ρ) is the traffic pressure, an increasing function
of density ρ(x, t) given by

p(ρ) = c0ρ
γ (3)

where c0, γ ∈ R+. The term τ is the relaxation time related to
the time scale of drivers’ behavior adapting to the equilibrium
density-velocity profile. The term V (ρ) describes the velocity-
density relationship at the equilibrium (ρ�, v�), as given by the
Greenshield’s model [14]

V (ρ) = vf

(
1−

(
ρ

ρm

)γ)
(4)

where vf is the maximum velocity, and ρm is the maximum
density and v� = V (ρ�).

Assumption 1 (Boundary conditions of the ARZ model): We
assume a constant traffic flux q� = ρ�v� entering the domain
from x = 0, while a VSL is imposed at the outlet x = �, where
� > 0 is the road length. Therefore, the boundary conditions are

ρ(0, t) =
q�

v(0, t)
(5)

v(�, t) = U(t) + v� (6)

where U(t) represents the variation from the steady-state veloc-
ity v� and will be designed later. In addition, we assume that
drivers adhere to v(�, t) as indicated on the VSL signs.

The linearized ARZ model around the steady state (ρ�, v�)
with boundary conditions is given by

∂tρ̃+ v�∂xρ̃ = −ρ�∂xṽ (7)

∂tṽ − (ρ�p′ (ρ�)− v�) ∂xṽ =
ρ̃V ′ (ρ�)− ṽ

τ
(8)

ρ̃(0, t) = −ρ�

v�
ṽ(0, t) (9)

ṽ(�, t) = U(t) (10)

where (ρ̃(x, t), ṽ(x, t)) are the deviations from the equilibrium
and are defined as ρ̃(x, t) = ρ(x, t)− ρ�, ṽ(x, t) = v(x, t)−
v�. By following the transformations (see [46])

w̄(x, t) = exp
( c1
v�

x
)(γp�

ρ�
ρ̃(x, t) + ṽ(x, t)

)
(11)

v̄(x, t) = exp

(
c2

γp� − v�
x

)
ṽ(x, t) (12)

system (7)–(10) can be mapped to a first-order 2 × 2 hyperbolic
system in (w̄, v̄) as

∂tw̄ + v�∂xw̄ = c̄1(x)v̄ (13)

∂tv̄ − (γp� − v�) ∂xv̄ = c̄2(x)w̄ (14)

w̄(0, t) = −r0v̄(0, t) (15)

v̄(�, t) = r1U(t) (16)

where

c̄1(x) = exp

(
c1
v�

x− c2
γp� − v�

x

)
c2 (17)

c̄2(x) = − exp

(
c2

γp� − v�
x− c1

v�
x

)
c1 (18)

with

r0 =
γp� − v�

v�
, r1 = exp

(
c2

γp� − v�
�

)
(19)

c1 =
1

τ

vf
ρm

ρ�

γp�
, c2 =

1

τ

(
vf
ρm

ρ�

γp�
− 1

)
. (20)

The parameters c1, c2, and r0 satisfy

c1 >
1

τ
> 0, c2 = c1 −

1

τ
> 0, r0 > 0 (21)

which represents the instability condition of (7)–(10) within
congested regime [46]. Our objective is to achieve exponential
convergence of (w̄, v̄) to zero in the spatial L2 norm.

B. Continuous-Time PDE Backstepping Control

Consider the invertible backstepping transformation

α(x, t) = w̄(x, t)−
∫ x

0

K11(x, ξ)w̄(ξ, t)dξ

−
∫ x

0

K12(x, ξ)v̄(ξ, t)dξ (22)

β(x, t) = v̄(x, t)−
∫ x

0

K21(x, ξ)w̄(ξ, t)dξ

−
∫ x

0

K22(x, ξ)v̄(ξ, t)dξ (23)

where Kij(x, ξ), i, j = 1, 2 are the kernels that evolve in the
triangular domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ �} and are gov-
erned by equations detailed in [46]. Then, adopting standard
arguments in PDE backstepping, we can show that the transfor-
mation (22) and (23), and the continuous-time boundary control
law U(t) derived in [46], given by

U(t)=
1

r1

∫ �

0

(
K21(�, ξ)w̄(ξ, t)+K22(�, ξ)v̄(ξ, t)

)
dξ (24)

map the system (13)–(21) into the target (α, β)-system

∂tα+ v�∂xα = 0 (25)

∂tβ − (γp� − v�) ∂xβ = 0 (26)

α(0, t) = −r0β(0, t) (27)

β(�, t) = 0. (28)

The inverse transformation of (22) and (23) is given by

w̄(x, t) = α(x, t) +

∫ x

0

L11(x, ξ)α(ξ, t)dξ

+

∫ x

0

L12(x, ξ)β(ξ, t)dξ (29)

v̄(x, t) = β(x, t) +

∫ x

0

L21(x, ξ)α(ξ, t)dξ

+

∫ x

0

L22(x, ξ)β(ξ, t)dξ (30)

where kernels Lij(x, ξ), i, j = 1, 2 are a specific case of the
general form of kernel equations detailed in [36]. The inputU(t)
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can also be expressed in target system (α, β) states as

U(t)=
1

r1

∫ �

0

(
L21(�, ξ)α(ξ, t) + L22(�, ξ)β(ξ, t)

)
dξ. (31)

C. Emulation of the PDE Backstepping Control

We aim to achieve exponential convergence of the states of
the system (13)–(21) to zero by sampling the continuous-time
controller U(t) given by (24) at a sequence of time instants
{tk}k∈N . These time instants will be determined via several
event triggers in subsequent sections. The control input is held
constant between two successive time instants and is updated
when a certain condition is met. We define the control input for
t ∈ [tk, tk+1), k ∈ N as

Uk := U(tk)

=
1

r1

∫ �

0

K21(�, ξ)w̄(ξ, tk)dξ +
1

r1

∫ �

0

K22(�, ξ)v̄(ξ, tk)dξ

=
1

r1

∫ �

0

L21(�, ξ)α(ξ, tk)dξ +
1

r1

∫ �

0

L22(�, ξ)β(ξ, tk)dξ.

(32)

As a result, the boundary conditions in (6), (10), and (16) become
v(�, t) = Uk + v�, ṽ(�, t) = Uk, and

v̄(�, t) = r1Uk. (33)

The actuation deviation d(t) between the continuous-time con-
trol and its sampled counterpart, i.e., the input holding error, is
defined as follows for t ∈ [tk, tk+1), k ∈ N:

d(t) := Uk − U(t)

=
1

r1

∫ �

0

L21(�, ξ) (α (ξ, tk)− α(ξ, t)) dξ

+
1

r1

∫ �

0

L22(�, ξ) (β (ξ, tk)− β(ξ, t)) dξ. (34)

Note that we have expressedd(t) in terms of the the target system
states (α, β). Through backstepping transformation (22) and
(23), the system (13)–(15), (17)–(21), (32), and (33) is mapped
to the target system

αt(x, t) + v�αx(x, t) = 0 (35)

βt(x, t)− (γp� − v�)βx(x, t) = 0 (36)

α(0, t) = −r0β(0, t) (37)

β(�, t) = r1d(t) (38)

for t ∈ [tk, tk+1), k ∈ N.
Now, we present the well-posedness of the closed-loop sys-

tem (13)–(15), (17)–(21), (32), and (33) between two sampling
instants.

Proposition 1 (Well-Posedness between control updates):
For given (w̄(·, tk), v̄(·, tk))T ∈ L2((0, �);R2), there exists a
unique solution (w̄, v̄)T ∈ C0([tk, tk+1];L

2((0, �);R2)) to the
system (13)–(15), (17)–(21), (32), and (33), between two time
instants tk and tk+1.

Remark 1: This proposition is a straightforward application
of [7, Proposition 1], with the difference up to the scaling

factor �, i.e., the road length. Throughout this article, we es-
tablish the well-posedness of the closed-loop system by iter-
atively constructing the solution in the hybrid time domain
T =

⋃K−1
k=0 [tk, tk+1]× {k}, where T ⊂ R≥0 × N and K is

possibly ∞ and/or tK = ∞.

III. REGULAR EVENT-TRIGGERED CONTROL (R-ETC)

This section presents the designs for regular ETC (R-
ETC). These designs are associated with strictly decreasing
Lyapunov functions, and are presented in three configurations:
1) continuous-time event-triggered (R-CETC); 2) periodic
event-triggered (R-PETC); and 3) STC (R-STC).

A. Regular Continuous-Time Event-Triggered Control
(R-CETC)

The design of R-CETC is detailed in [9] and [11]. However,
the parameters in the triggering mechanism and the conditions
for parameter selection are presented in a complex way. In the
extended version of this article found at [52], we present the
details of a more straightforward approach to the triggering
mechanism and parameter choices. Since R-CETC serves as
a foundation for R-PETC and R-STC, we summarize the main
results of R-CETC presented in [52] as follows.

Let Ir = {tr0, tr1, tr2, . . .} denote the sequence of event times
associated with R-CETC, and it consists of two parts as follows.

1) An ETC input Ur
k

Ur
k := U(trk) (39)

for t ∈ [trk, t
r
k+1), k ∈ N, where U(t) is given by (24).

Then, the boundary condition (33) becomes

v̄(�, t) = r1U
r
k . (40)

2) A continuous-time event-trigger determining event times

trk+1 = inf {t ∈ R+ | t > trk,Γ
r(t) > 0, k ∈ N} (41)

with tr0 = 0, whereΓr(t) is the triggering function defined
as

Γr(t) := d2(t)− θmr(t). (42)

The function d(t) is given by (34) for t ∈ [trk, t
r
k+1), k ∈

N, and mr(t) satisfies the ODE

ṁr(t) = − ηmr(t)−θmd2(t)+κ1‖α[t]‖2+κ2‖β[t]‖2

+ κ3α
2(�, t) (43)

for t ∈ (trk, t
r
k+1), k ∈ N with mr(tr0) = mr(0) > 0

and mr(tr−k ) = mr(trk) = mr(tr+k ). The parameters
θ, η, θm, κ1, κ2, κ3 > 0 are event-trigger parameters to be
appropriately chosen.

We outline the conditions on event-trigger parameters that
ensure the Zeno-free behavior and the exponential convergence
of the closed-loop signals of the system (13)–(15), (17)–(21),
and (39)–(43) to zero in the spatial L2 norm as follows.

Assumption 2 (Event-trigger parameter selection): The
parameters θ, η > 0 are arbitrary design parameters, and
κ1, κ2, κ3 > 0 are chosen as

κ1 =
ε1

θ(1− σ)
, κ2 =

ε2
θ(1− σ)

, κ3 =
ε3

θ(1− σ)
(44)
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where σ ∈ (0, 1) and

ε1 = 4
(v�)2

r21

∫ �

0

(L̇21(�, y))2dy (45)

ε2 = 4
(γp� − v�)2

r21

∫ �

0

(L̇22(�, y))2dy (46)

ε3 = 4
(v�)2

r21
(L21(�, �))2. (47)

The event-trigger parameter θm > 0 is chosen as

θm = Cr21r
2
0e

μ�
(γp�−v�) (48)

where μ > 0,

C > max

{
e

μ�
v� κ3,

max{κ1, κ2}r
μ

}
(49)

with r defined as

r :=
1

min
{

1
v� e

− μ�
v� ,

r20
(γp�−v�)

} . (50)

Next, we summarize the main results under R-CETC.
Theorem 1 (Results under R-CETC): Let Ir =

{tr0, tr1, tr2, . . .} with tr0 = 0 be the set of event times generated
by the R-CETC approach (39)–(43) with appropriate choices
for the event-trigger parameters under Assumption 2. Then, it
holds that

Γr(t) ≤ 0, ∀t ∈ [0, sup (Ir)). (51)

As a result, the following results hold.

R1: The set of event-times Ir generates an increasing sequence.
It holds that trk+1 − trk ≥ τd > 0, k ∈ N, where

τd =
1

a
ln

(
1 +

σa

(1− σ)(a+ θθm)

)
. (52)

for σ ∈ (0, 1). Here, a > 0 is given by

a = 1 + ε0 + η, (53)

where

ε0 = 4(γp� − v�)2
(
L22(�, �)

)2
. (54)

Due to the existence of a uniform positive minimal dwell-time
τd > 0, it follows that trk → ∞ as k → ∞, thereby guaran-
teeing Zeno-free behavior.

R2: For every (w̄(·, 0), v̄(·, 0))T ∈ L2((0, �);R2), there exists
a unique solution (w̄, v̄)T ∈ C0(R+;L

2((0, �);R2)) to the
system (13)–(15), (17)–(21), and (39)–(43) for all t > 0.

R3: The dynamic variablemr(t)governed by (43) withmr(0) >
0 satisfies mr(t) > 0 for all t > 0.

R4: Consider a Lyapunov candidate

V r(t) = V1(t) +mr(t) (55)

where

V1(t) :=

∫ �

0

(
C

v�
α2(x, t)e−

μx
v�

+
Cr20

γp� − v�
β2(x, t)e

μx
γp�−v�

)
dx (56)

Then, it holds that

V̇ r(t) ≤ −b�V r(t) (57)

for all t ∈ (trk, t
r
k+1), k ∈ N, and

V r(t) ≤ e−b�tV0 (58)

for all t > 0, where V0 = V r(0) and

b� := min {b, η} > 0 (59)

with

b := μ− max{κ1, κ2}r
C

> 0. (60)

See Assumption 2 for details on μ, κ1, κ2, r, C, η > 0.
R5: The closed-loop signal ‖w̄[t]‖+ ‖v̄[t]‖ associated with the

system (13)–(15), (17)–(21), and (39)–(43), exponentially
converges to zero.

See [52, Appendix] for the proof.
Remark 2: We refer to the signal e−b�tV0 in (58) as the

performance barrier, which the Lyapunov function of the system
must not violate. The estimate for the time derivative of V r(t)
provided in (57) indicates that R-CETC enforces a strict decrease
in the Lyapunov functionV r(t) in (55) along system trajectories.
However, this strict requirement limits R-CETC’s ability to
achieve sparser control updates. Addressing this limitation is the
objective of our design for performance-barrier event triggers,
detailed in Section IV.

B. Regular Periodic Event-Triggered Control (R-PETC)

In this subsection, we the introduce R-PETC approach applied
to the system (13)–(21). Since the R-PETC design can be derived
via the P-PETC approach detailed in Section IV-B, we will only
present its structure here to prevent redundancy.

Let Ĩr = {t̃r0, t̃r1, t̃r2, . . .} denote the sequence of event times
associated with R-PETC, and let the event-trigger parameters
θ, η, θm, κ1, κ2, κ3 > 0 be selected as outlined in Assumption 2.
The proposed R-PETC strategy consists of two parts as follows.

1) An ETC input Ũr
k

Ũr
k := U(t̃rk) (61)

for t ∈ [t̃rk, t̃
r
k+1), k ∈ N, where U(t) is given by (24).

Then, boundary condition (33) becomes

v̄(�, t) = r1Ũ
r
k . (62)

2) A periodic event-trigger determining event times

t̃rk+1 = inf{t ∈ R+ | t > t̃rk, Γ̃
r(t) > 0, t = nh

h > 0, n ∈ N, k ∈ N} (63)

with t̃r0 = 0. Here, h is the sampling period selected as

0 < h ≤ τd (64)

where τd is given by (52)–(54), and Γ̃r(t) is the triggering
function defined as

Γ̃r(t) := (a+ θθm)eahd2(t)− θθmd2(t)− θamp(t)
(65)
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where a is defined in (53). Further, d(t) is defined in
(34), and mr(t) satisfies the ODE given by (43), along
the solution of (13)–(15), (17)–(21), and (61)–(65) for all
t ∈ [t̃rk, t̃

r
k+1), k ∈ N.

The main difference between the continuous-time event-
trigger (41)–(43) and the periodic event-trigger (63)–(65) lies in
that the triggering functionΓr(t)of R-CETC has to be monitored
continuously while the triggering function Γ̃r(t) of R-PETC
requires only periodic evaluations.

For brevity, we present the results under R-PETC alongside
R-STC results in Theorem 2 in the following subsection.

C. Regular Self-Triggered Control (R-STC)

In this subsection, we present the R-STC strategy for the
system (13)–(21). Since this method can be derived via the
P-STC design in Section IV-C, we will only present its structure
here to prevent redundancy.

Let Ǐr = {ťr0, ťr1, ťr2, . . .} denote the sequence of event
times associated with R-STC. Let the event-trigger parameters
θ, η, θm, κ1, κ2, κ3 > 0 be selected as outlined in Assumption 2.
The proposed R-STC strategy consists of two parts as follows.

1) An ETC input Ǔr
k

Ǔr
k := U(ťrk) (66)

for t ∈ [ťrk, ť
r
k+1), k ∈ N where U(t) is given by (24).

Then, boundary condition (33) becomes

v̄(�, t) = r1Ǔ
r
k . (67)

2) A self-trigger determining event times

ťrk+1 = ťrk +Gr
(
H(ťrk),m

r
(
ťrk
))

(68)

with ťr0 = 0 andGr(·, ·) > 0 is a positively and uniformly
lower bounded function

Gr (H(t),mr(t))

:= max

{
τd,

1

�� + η
ln

(
θmr(t) + θθmH(t)

��+η

H(t) + θθmH(t)
��+η

)}
.

(69)

Here, τd is R-CETC minimum dwell-time given by (52)–
(54), mr(t) satisfies the dynamics (43) along the solution
of (34)–(38) for t ∈ (ťrk, ť

r
k+1), k ∈ N. The constant �� >

0 is defined as

�� := r20r
2
1e

μ�
(γp�−v�) � (70)

where

� =
4

r21
max

{
v�L̃21e

μ�
v� ,

(γp� − v�)L̃22

r20

}
(71)

with

L̃21=

∫ �

0

(L21(�, ξ))2dξ, L̃22=

∫ �

0

(L22(�, ξ))2dξ. (72)

In (69), H(t) is defined as

H(t) := 3�

∫ �

0

(
1

v�
α2(x, t)e−

μx
v�

+
r20

(γp� − v�)
β2(x, t)e

μx
(γp�−v�)

)
dx. (73)

R-STC distinguishes itself from both R-CETC and R-
PETC because R-STC proactively determines the subsequent
event-time based on the system state at the current event
time, without monitoring any triggering function. We now
state the results under R-STC and R-PETC, in the following
theorem.

Theorem 2 (Results under R-STC (respectively, R-PETC)):
Let Ǐr = {ťr0, ťr1, ťr2, . . .} with ťr0 = 0 (respectively, Ĩr =
{t̃r0, t̃r1, t̃r2, . . .} with t̃r0 = 0) be the set of increasing event times
generated by the R-STC approach (66)–(73) [respectively, R-
PETC approach (61)–(65)] with appropriate choices for the
event-trigger parameters under Assumption 2. Then, the follow-
ing results hold.

R1: For every (w̄(·, 0), v̄(·, 0))T ∈ L2((0, �);R2), there exists a
unique solution (w̄, v̄)T ∈ C0(R+;L

2((0, �);R2)) to the R-
STC closed-loop system (13)–(15), (17)–(21), and (66)–(73)
[respectively, R-PETC closed-loop system (13)–(15),(17)–
(21), and (61)–(65)] for all t > 0.

R2: Γr(t) given by (42) satisfies Γr(t) ≤ 0 for all t > 0, along
the R-STC (respectively, R-PETC) closed-loop solution.

R3: The dynamic variablemr(t)governed by (43) withmr(0) >
0 satisfies mr(t) > 0 for all t > 0, along the R-STC (respec-
tively, R-PETC) closed-loop solution.

R4: The Lyapunov candidate V r(t) given by (55) and (56)
satisfies (57), (59), and (60) for all t ∈ (ťrk, ť

r
k+1), k ∈ N

(respectively, t ∈ (t̃rk, t̃
r
k+1), k ∈ N) and (58)–(60) for all

t > 0, along the R-STC (respectively, R-PETC) closed-loop
solution.

R5: The closed-loop signal ‖w̄[t]‖+ ‖v̄[t]‖ associated with the
R-STC (respectively, R-PETC) closed-loop system exponen-
tially converges to zero.

The proof of Theorem 2 follows arguments similar to those
in the proofs of Theorem 4 in Section IV-B and Theorem 5 in
Section IV-C, and is therefore omitted.

IV. PERFORMANCE-BARRIER EVENT-TRIGGERED

CONTROL (P-ETC)

In this section, we discuss the design of performance-
barrier ETC (P-ETC) under continuous-time event-triggered
(P-CETC), periodic event-triggered (P-PETC), and self-
triggered (P-STC) control. By introducing a performance
residual—the difference between the performance barrier
and the Lyapunov function—into the triggering mecha-
nism, we allow the Lyapunov function to deviate from
a monotonic decrease while adhering to the performance
barrier.

A. Performance-Barrier Continuous-Time
Event-Triggered Control (P-CETC)

Let Ip = {tp0, t
p
1, t

p
2, . . .} denote the sequence of event times

associated with P-CETC. Let the event-trigger parameters be
selected as in Assumption 2, and c > 0 be an additional design
parameter. The proposed P-CETC strategy consists of two parts
as follows.
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1) An ETC input Up
k

Up
k := U(tpk) (74)

for t ∈ [tpk, t
p
k+1), k ∈ N, where U(t) is given by (24).

Then, boundary condition (33) becomes

v̄(�, t) = r1U
p
k . (75)

2) A continuous-time event-trigger determining event times

tpk+1 = inf {t ∈ R+ | t > tpk,Γ
p(t) > 0, k ∈ N} (76)

with tp0 = 0. The triggering function Γp(t) is defined as

Γp(t) := d2(t)− θmp(t)− c

θm
W p(t) (77)

where d(t) is given by (34), mp(t) satisfies the ODE

ṁp(t) = − ηmp(t)− θmd2(t) + κ1‖α[t]‖2 + κ2‖β[t]‖2

+ κ3α
2(�, t) + cW p(t) (78)

for t ∈ (tpk, t
p
k+1), k ∈ N withmp(tp0) = mp(0) > 0, and

mp(tp−k ) = mp(tpk) = mp(tp+k ). Here, W p(t) is the per-
formance residual, defined as the difference between
the value of the performance-barrier e−b�tV p

0 and the
Lyapunov function

W p(t) := e−b�tV p
0 − V p(t) (79)

where b� is given by (59), and V p(t) is the Lyapunov
candidate defined as

V p(t) = V1(t) +mp(t) (80)

with V1(t) given by (56) and

V0 = V p
0 = V p(0) = V r(0). (81)

Next, we present Lemma 1 and Lemma 2, required for proving
the main results of P-CETC in Theorem 3.

Lemma 1: Under the P-CETC event-trigger (76)–(81), it
holds that the triggering function Γp(t) satisfies Γp(t) ≤ 0,
and as a result, the dynamic variable mp(t) governed by
(78) with mp(0) = mr(0) > 0 satisfies mp(t) > 0 for all t ∈
[0, sup(Ip)).

The proof follows steps similar to those in [30, Lemma 1] and
is therefore omitted.

Lemma 2: Assume that an event has occurred at t = t� ≥ 0
under P-CETC (74)–(81). If the next event time t = tp gen-
erated by P-CETC is finite, then the next event time t = tr

generated by R-CETC (39)–(43) satisfies tr ≤ tp, provided that
mr(t�) = mp(t�) > 0 and e−b�tV0 ≥ V p(t) for all t ∈ [t�, tr].
The equality holds if e−b�tV0 = V p(t) for all t ∈ [t�, tr = tp].

The proof follows steps similar to those in [30, Lemma 2] and
is therefore omitted.

Now, we state the main results of P-CETC as follows.
Theorem 3 (Results under P-CETC): Let Ip =

{tp0, t
p
1, t

p
2, . . .} with tp0 = 0 be the set of event times generated

by the P-CETC approach (74)–(81) with appropriate choices for
the event-trigger parameters under Assumption 2, and c > 0.
Then, it holds that

Γp(t) ≤ 0, ∀t ∈ [0, sup (Ip)). (82)

As a result, the following results hold.

R1: The set of event-times Ip generates an increasing sequence.
It holds that tpk+1 − tpk ≥ τd > 0, k ∈ N, where the minimal
dwell-time τd is given by (52)–(54). Since τd > 0, as k →
∞, it follows that tpk → ∞, thereby guaranteeing Zeno-free
behavior.

R2: For every (w̄(·, 0), v̄(·, 0))T ∈ L2((0, �);R2), there exists
a unique solution (w̄, v̄)T ∈ C0(R+;L

2((0, �);R2)) to the
system (13)–(15), (17)–(21), and (74)–(81) for all t > 0.

R3: The dynamic variablemp(t)governed by (78) withmp(0) >
0 satisfies mp(t) > 0 for all t > 0.

R4: The Lyapunov candidate V p(t) given by (80) and (81)
satisfies

V̇ p(t) ≤ −b�V p(t) + c
(
e−b�tV0 − V p(t)

)
(83)

for all t ∈ (tpk, t
p
k+1), j ∈ N, and

V p(t) ≤ e−b�tV0 (84)

for all t > 0, where b� is given by (59).
R5: The closed-loop signal ‖w̄[t]‖+ ‖v̄[t]‖ associated with the

system (13)–(15), (17)–(21), and (74)–(81), exponentially
converges to zero.

Proof.
As a result of Lemma 1, it holds that Γp(t) ≤ 0, and con-

sequently, mp(t) > 0 for t ∈ [0, sup(Ip)). Consider the time
period t ∈ [0, sup(Ip)). By selecting the event-trigger parame-
ters as outlined in Assumption 2 and c > 0, we can show that
V p(t) satisfies

V̇ p(t) ≤ −b�V p(t) + cW p(t) (85)

for t ∈ (tpk, t
p
k+1) (the proof follows similar arguments to those

in [52, Appendix]). The time derivative of W p(t) satisfies

Ẇ p(t) = −b�e−b�tV p
0 − V̇ p(t) ≥ − (b� + c)W p(t) (86)

for t ∈ (tpk, t
p
k+1). Then, noting that W p(t) is continuous and

W p(0) = 0, we can obtain that

W p(t) ≥ e−(b�+c)(t−tpk)W p (tpk)

≥ e−(b�+c))(t−tpk) ×
i=k∏
i=1

e−(b�+c)(tpi −tpi−1)W p(0)

≥ e−(b�+c)tW p(0) = 0 (87)

for all t ∈ [0, sup(Ip)), i.e., e−b�tV p
0 ≥ V p(t) for all t ∈

[0, sup(Ip)). This result satisfies the assumption made in
Lemma 2, from which we obtain R1.

R2 is obtained recalling Proposition 1 and Remark 1. Since R1
establishes that the system is Zeno-free, i.e., sup(Ip) = ∞, we
have mp(t) > 0 for all t > 0 as stated in R3, V p(t) ≤ e−b�tV0

for all t > 0 as stated in R4. Finally, we can obtain the ex-
ponential convergence of the closed-loop signals of (13)–(15),
(17)–(21), (74)–(81) to zero as stated in R5 by following classical
arguments involving the bounded invertibility of the backstep-
ping transformations (22), (23), (29), and (30). �

Remark 3: As observed from (83), we have

V̇ p(t) ≤ −b�V p(t) + cW p(t)

where W p(t) := e−b�tV p
0 − V p(t). This indicates that the time

derivative of the Lyapunov function does not necessarily need
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to be negative at all times. If the performance residual W p(t)
is large—meaning that the Lyapunov function V p(t) is sig-
nificantly below the performance barrier e−b�tV p

0 —there is a
reduced risk of violating the performance barrier. In such cases,
V̇ p(t) can be positive, allowing V p(t) to increase. Conversely,
if W p(t) is relatively small—meaning the Lyapunov function
V p(t) is approaching the performance barrier e−b�tV p

0 —the
risk of breaching the performance barrier increases. In such
situations, V̇ p(t) must be negative to ensure that the Lyapunov
function remains below the threshold.

B. Performance-Barrier Periodic Event-Triggered Control
(P-PETC)

This section introduces the P-PETC approach, derived from
the P-CETC scheme. This approach is realized by redesigning
the triggering function, Γp(t), of P-CETC to Γ̃p(t), allowing for
periodic evaluation while ensuring that Γp(t) remains nonposi-
tive and the dynamic variable mp(t) remains positive along the
P-PETC closed-loop system solution.

Let Ĩp = {t̃p0, t̃
p
1, t̃

p
2, . . .} denote the sequence of event times

associated with P-PETC. Let the event-trigger parameters
θ, θm, κ1, κ2, κ3 > 0 be selected as outlined in Assumption 2,
let η > 0 be chosen later, and c > 0 be a design parameter. The
proposed P-PETC strategy consists of two parts as follows.

1) An ETC input Ũp
k

Ũp
k := U(t̃pk) (88)

for t ∈ [t̃pk, t̃
p
k+1), k ∈ N, where U(t) is given by (24).

Then, boundary condition (33) becomes

v̄(�, t) = r1Ũ
p
k . (89)

2) A periodic event-trigger determining the event times

t̃pk+1 = inf{t ∈ R+ | t > t̃pk, Γ̃
p(t) > 0, t = nh

h > 0, n ∈ N, k ∈ N} (90)

with t̃p0 = 0, h is the sampling period satisfying (64), and
the triggering function Γ̃p(t) defined as

Γ̃p(t) := (a+ θθm)eahd2(t)− θθmd2(t)− θamp(t)

− ac

θm
e−chW p(t) (91)

where a is given by (53), d(t) is given by (34) for
t ∈ [t̃pk, t̃

p
k+1), k ∈ N, mp(t) is governed by (78) along

the solution of (35)–(38) for t ∈ (t̃pk, t̃
p
k+1), k ∈ N, and

W p(t) is the performance residual given by (79)–(81).
Next, we present Lemmas 3–5, required for proving the main

results of P-PETC in Theorem 4.
Lemma 3: Consider the P-PETC approach (88)–(91). Ford(t)

given by (34), it holds that

(ḋ(t))2 ≤ ε0d
2(t) + ε1‖α[t]‖2 + ε2‖β[t]‖2 + ε3α

2(1, t)
(92)

along the solution of (35)–(38) for all t ∈ (nh, (n+ 1)h) and
any n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N. Here, ε0, ε1, ε2, ε3 > 0 are given

by (54), (45)–(47), respectively.
Lemma 3 is the direct result from [11, Lemma 1], and thus,

the proof omitted.

Lemma 4: Consider the P-PETC approach (88)–(91). Let
parameter η > 0 be chosen such that

η ≤ b (93)

where b is given by (60). Then, the residual W p(t) given by
(79)–(81) satisfies

W p(t) ≥ e−(b�+c)(t−nh)W p(nh), with b� = η (94)

along the solution of (35)–(38), and (78) for all t ∈ [nh, (n+
1)h) and any n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N. Further, it holds that

W p(t) ≥ 0, i.e., e−b�tV p
0 ≥ V p(t), with b� = η (95)

for all t > 0.
Proof: Differentiating (80) along the solution of (35)–(38),

and (78) in t ∈ [nh, (n+ 1)h) and anyn ∈ [t̃pk/h, t̃
p
k+1/h) ∩ N,

we obtain

V̇ p(t) ≤ −bV1(t)− ηmp(t) + cW p(t)

= −η (V1(t) +mp(t)) + (η − b)V1(t) + cW p(t).
(96)

Selecting η as in (93), we can get rid of V1(t) term to obtain
V̇ p(t) ≤ −ηV p(t) + cW p(t). Following the similar process
(85)–(87) in the proof of Theorem 3, we obtain (94) for all
t ∈ [nh, (n+ 1)h) and any n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N under the

P-PETC approach (88)–(91). Further, following similar argu-
ments, the relation (95) valid for all t > 0 can be obtained, due
to the absence of Zeno behavior under P-PETC. �

Lemma 5: Consider the P-PETC approach (88)–(91) with
the event-trigger parameters θ, θm, κ1, κ2, κ3 > 0 selected as in
Assumption 2, c > 0, and η > 0 chosen as in (93). Then, Γp(t)
of P-CETC given by (77) satisfies

Γp(t)

≤ 1

a

(
(a+ θθm)d2(nh)ea(t−nh) − θθmd2(nh)

−θamp(nh)− ac

θm
e−c(t−nh)W p(nh)

)
e−η(t−nh)

(97)

where a is given by (53), and h is the sampling period given
by (64), along the solution of (35)–(38), and (78) for all t ∈
[nh, (n+ 1)h) and any n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N.

Proof: Since it was shown in Lemma 4 that W p(t) ≥
e−(b�+c)(t−nh)W p(nh) with b� = η for all t ∈ [nh, (n+ 1)h)
and any n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N, it follows that

Γp(t) ≤ d2(t)− θmp(t)− c

θm
e−(η+c)(t−nh)W p(nh) (98)

for all t ∈ [nh, (n+ 1)h) and any n ∈ [t̃pk/h, t̃
p
k+1/h) ∩ N,

along the solution of (35)–(38), and (78). We define

Γp∗(t) := d2(t)− θmmp(t). (99)

By taking the time derivative of (99) in t ∈ (nh, (n+ 1)h) and
n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N, using the Young’s inequality, substi-

tuting the estimation of (ḋ(t))2 given by (92), and substituting
ṁp(t) given by (78), we get

Γ̇p∗(t) = 2d(t)ḋ(t)−θmṁp(t) ≤ d2(t)+(ḋ(t))2−θmṁp(t)
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≤ (1 + ε0+θθm) d2(t)+θηmp(t)− (θκ1 − ε1)‖α[t]‖2

− (θκ2 − ε2)‖β[t]‖2 − (θκ3 − ε3)α
2(�, t)− θcW p(t)

(100)

where W p(t) is given by (79). Replacing d2(t) in (100) with
Γp∗(t) given by (99), we further obtain

Γ̇p∗(t) ≤ (1 + ε0 + θθm)Γp∗(t) + θ(a+ θθm)mp(t)

− (θκ1 − ε1)‖α[t]‖2 − (θκ2 − ε2)‖β[t]‖2

− (θκ3 − ε3)α
2(�, t)− θcW p(t). (101)

It can be shown that both sides of (101) are well behaved in t ∈
(nh, (n+ 1)h) and n ∈ [t̃pk/h, t̃

p
k+1/h) ∩ N. Therefore, there

exists a nonnegative function ι(t) ∈ C0((t̃pk, t̃
p
k+1);R+) such

that

Γ̇p∗(t) = (1 + ε0 + θθm)Γp∗(t) + θ(a+ θθm)mp(t)

− (θκ1 − ε1)‖α[t]‖2 − (θκ2 − ε2)‖β[t]‖2

− (θκ3 − ε3)α
2(�, t)− θcW p(t)− ι(t) (102)

for all t ∈ (nh, (n+ 1)h) and n ∈ [t̃pk/h, t̃
p
k+1/h) ∩ N. Fur-

thermore, replacing d2(t) with Γp∗(t) term given by (99), we
can rewrite the dynamics of mp(t) given by (78) as

ṁp(t) = − θmΓp∗(t)− (θθm + η)mp(t) + κ1‖α[t]‖2

+ κ2‖β[t]‖2 + κ3α
2(�, t) + cW p(t) (103)

for t ∈ (nh, (n+ 1)h) and n ∈ [t̃pk/h, t̃
p
k+1/h) ∩ N. Then,

combining (102) with (103), we can obtain the following ODE
system:

ż(t) = Az(t) + ν(t) (104)

where

z(t) =

[
Γp∗(t)
mp(t)

]

A =

[
1 + ε0 + θθm θ (a+ θθm)

−θm −(θθm + η)

]

ν(t) =

⎡
⎢⎢⎣
⎛
⎝− (θκ1 − ε1)‖α[t]‖2 − (θκ2 − ε2)‖β[t]‖2

− (θκ3 − ε3)α
2(�, t)− θcW p(t)− ι(t)

⎞
⎠

κ1‖α[t]‖2 + κ2‖β[t]‖2 + κ3α
2(�, t) + cW p(t)

⎤
⎥⎥⎦ .

(105)
Solving (104) gives us

z(t) = eA(t−nh)z(nh) +

∫ t

nh

eA(t−ξ)ν(ξ)dξ (106)

for all t ∈ [nh, (n+ 1)h) and n ∈ [t̃pk/h, t̃
p
k+1/h) ∩ N. Then,

we can obtain that

Γp∗(t) = DeA(t−nh)z(nh) +

∫ t

nh

DeA(t−ξ)ν(ξ)dξ (107)

whereD = [1 0]. The matrixAhas two distinct eigenvalues−η
and 1 + ε0. To find an upper bound of Γp∗(t), we diagonalize

the matrix exponential eAt as follows:

eAt=
θm
a

[
−θ −a+θθm

θm

1 1

][
e−ηt 0

0 e(1+ε0)t

][
1 a+θθm

θm

−1 −θ

]
.

(108)

Then, we can show that

DeA(t−ξ)ν(ξ)

= − ((θκ1 − ε1) g1(t− ξ)− κ1g2(t− ξ)) ‖α[ξ]‖2

− ((θκ2 − ε2) g1(t− ξ)− κ2g2(t− ξ)) ‖β[t]‖2

− ((θκ3 − ε3) g1(t− ξ)− κ3g2(t− ξ))α2(�, ξ)

− c (θg1(t− ξ)− g2(t− ξ))W p(ξ)

− g1(t− ξ)ι(ξ) (109)

where

g1(t) =
1

a

(
−θθm + (a+ θθm)eat

)
e−ηt (110)

g2(t) =
θ(a+ θθm)

a

(
−1 + eat

)
e−ηt. (111)

Noting that a > 0, it is obvious that g1(t) > 0, g2(t) > 0 and

θg1(t)− g2(t) = θe−ηt > 0 (112)

for all t ≥ 0. Also, noting that θκi/εi = 1/(1− σ), i = 1, 2, 3
from (44), and recalling (52), we obtain that

(θκi − εi) g1(t− ξ)− κig2(t− ξ)

=
εi(a+ θθm)

a

(
1 +

σa

(1− σ)(a+ θθm)
− ea(t−ξ)

)
e−η(t−ξ)

=
εi(a+ θθm)

a

(
eaτd − ea(t−ξ)

)
e−η(t−ξ) (113)

for all i = 1, 2, 3. As nh ≤ ξ ≤ t < (n+ 1)h, and h ≤ τd,
we have eaτd − ea(t−ξ) > 0, and thus, (θκi − εi)g1(t− ξ)−
κig2(t− ξ) > 0 for all i = 1, 2, 3. As a result, every term in
(109) is nonpositive and we can argue that DeA(t−ξ)ν(ξ) ≤
0 for all t, ξ such that nh ≤ ξ ≤ t < (n+ 1)h, and n ∈
[t̃pk/h, t̃

p
k+1/h) ∩ N. Considering this fact along with (107), we

obtain that for t ∈ [nh, (n+ 1)h)

Γp∗(t) ≤ DeA(t−nh)z(nh)

≤ g1(t− nh)Γp∗(nh) + g2(t− nh)mp(nh)

≤ 1

a
(−θ(a+ θθm)mp(nh)−θθmΓp∗(nh)

+(a+ θθm) (Γp∗(nh)+θmp(nh)) ea(t−nh)
)
e−η(t−nh).

(114)

By using (99) to eliminate Γp∗(nh) on the right-hand side of
(114), we obtain

Γp∗(t)

≤ 1

a

(
(a+ θθm)d2(nh)ea(t−nh) − θθmd2(nh)

−θamp(nh)) e−η(t−nh) (115)
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Then, recalling (98) and (99), and using (115), we can obtain
inequality (97) for t ∈ [nh, (n+ 1)h), which completes the
proof. �

Now, we state the main results of P-PETC as follows.
Theorem 4 (Results under P-PETC): Let Ĩp =

{t̃p0, t̃
p
1, t̃

p
2, . . .} with t̃p0 = 0 be the set of increasing event

times generated by the P-PETC approach (88)–(91) with
appropriate choices for the event-trigger parameters under
Assumption 2, c > 0, and η > 0 chosen as in (93). Then, the
following results hold.

R1: For every (w̄(·, 0), v̄(·, 0))T ∈ L2((0, �);R2), there exists a
unique solution (w̄, v̄)T ∈ C0(R+;L

2((0, �);R2)) to the P-
PETC closed-loop system (13)–(15), (17)–(21), and (88)–(91)
for all t > 0.

R2: The function Γp(t) given by (77) satisfies Γp(t) ≤ 0 for all
t > 0, along the P-PETC closed-loop solution.

R3: The dynamic variablemp(t)governed by (78) withmp(0) =
mr(0) > 0 satisfies mp(t) > 0 for all t > 0, along the P-
PETC closed-loop solution.

R4: The Lyapunov candidate V p(t) given by (80) satisfies (83)
for all t ∈ (t̃pk, t̃

p
k+1), k ∈ N and (84) for all t > 0 with η =

b�, along the P-PETC closed-loop solution.
R5: The closed-loop signal ‖w̄[t]‖+ ‖v̄[t]‖ associated with the

P-PETC closed-loop system (13)–(15), (17)–(21), and (88)–
(91), exponentially converges to zero.

Proof: R1 follows from Proposition 1 and Remark 1.
Lemma 4 ensures that W p(t) ≥ 0 for all t > 0 with properly
chosen parameters listed in Assumption 2 and η = b�. Consider
the interval t ∈ [t̃pk, t̃

p
k+1). Assume that an event has triggered at

t = t̃pk and mp(t̃pk) > 0. At t = t̃pk, the control law is updated,
so d(t̃pk) = 0. Then, we have from (77) that

Γp
(
t̃pk
)
= −θmp(t̃pk)−

c

θm
W p(t̃pk) < 0. (116)

Then, Γp(t) will at least remain nonpositive until t = t̃pk + τd,
where τd is the minimal dwell-time of P-CETC given by R2 of
Theorem 3. Since h ≤ τd, Γp(t) will definitely remain nonpos-
itive in t ∈ [t̃pk, t̃

p
k + h). At each t = nh, n > 0, n ∈ N, the P-

PETC given by (88)–(91) is evaluated, and only when Γ̃p(nh) >
0 that an event is triggered and the control input is updated. When
Γ̃p(nh) ≤ 0, (91) and (97) imply the right-hand side of (97) is
nonpositive, and thus, Γp(t) will definitely remain nonpositive
at least until t = t̃pk+1 when Γ̃p(t̃p−k+1) > 0. Since Γp(t) ≤ 0

for t ∈ [t̃pk, t̃
p
k+1), we follow a process similar to the proof of

Lemma 1 and obtain mp(t) > 0 for t ∈ [t̃pk, t̃
p
k+1]. Therefore,

after the control input has been updated at t = t̃pk+1, we have
Γp(t̃pk+1) = −θmp(t̃pk+1)− c

θm
W p(t̃pk+1) < 0. Similarly, we

can analyze the behavior of Γp(t) and mp(t) in all t ∈ [t̃pk, t̃
p
k+1)

for any k ∈ N starting from t̃p0 = 0 and mp(0) > 0 to prove
that Γp(t) ≤ 0 for all t ∈ [t̃pk, t̃

p
k+1), k ∈ N and mp(t) > 0 for

all t > 0, as stated in R2 and R3. As mp(t) > 0 for all t > 0
guarantees the positive definiteness of V p(t), we have R4 and
R5 by following similar arguments in the proofs of R4 and R5
of Theorem 3. �

C. Performance-Barrier Self-Triggered Control (P-STC)

In this subsection, we introduce the P-STC approach derived
from the P-CETC scheme. P-STC determines the next event

time at the current event time using continuously available
measurements, a prediction of the closed-loop system states,
and bounds of the constituent terms of the P-CETC triggering
functionΓp(t). We show the P-STC approach ensures thatΓp(t)
given by (77) remains nonpositive, and mp(t) given by (78)
remains positive along the P-STC closed-loop system solution.

Let Ǐp = {ťp0, ť
p
1, ť

p
2, . . .} denote the sequence of event

times associated with P-STC. Let the event-trigger parameters
θ, θm, κ1, κ2, κ3 > 0be selected as outlined in Assumption 2, let
η > 0 be chosen as in (93), and let c > 0 be a design parameter.
The proposed P-STC strategy consists of two parts as follows.

1) An event-triggered boundary control input Ǔp
k

Ǔp
k := U(ťpk) (117)

for t ∈ [ťpk, ť
p
k+1), k ∈ N where U(t) is given by (24).

Then, boundary condition (33) becomes

v̄(�, t) = r1Ǔ
p
k . (118)

2) A self-trigger determining event times

ťpk+1 = ťpk +Gp
(
H(ťpk),m

p
(
ťpk
)
,W p(ťpk)

)
(119)

with ťp0 = 0 and Gp(·, ·, ·) > 0 being a positively and
uniformly lower bounded function

Gp (H(t),mp(t),W p(t)) := max {τd, τ̌(t)} (120)

where

τ̌(t)=
1

��+η+ c
ln

(
θmp(t)+ θθmH(t)

��+η + c
θm

W p(t)

H(t) + θθmH(t)
��+η

)

(121)

and τd is the R/P-CETC minimum dwell time given by
(52)–(54). The variable mp(t) satisfies the dynamics (78)
along the solution of (34)–(38) for t ∈ (ťpk, ť

p
k+1), k ∈ N,

W p(t) is the performance residual given by (79)–(81),
and H(t) is given by (73).

Next, we present Lemma 6 which provides bounds on d2(t),
mp(t), and W p(t) required for proving the main results of P-
STC.

Lemma 6: Consider the P-STC approach (117)–(121), which
generates an increasing set of event times {ťpk}k∈N with ťpk = 0.
Then, for the input holding error error d(t) given by (34), the
following estimate holds

d2(t) ≤ H(ťpk)e
��(t−ťpk) (122)

where�� > 0 is given by (70), andH(t) is given by (73). Further,
if the event-trigger parameters θ, θm, κ1, κ2, κ3 > 0 are chosen
as in Assumption 2, c > 0, and η > 0 is chosen as in (93), then
W p(t) given by (79)–(81) satisfies

W p(t) ≥ e−(b�+c)(t−ťpk)W p(ťpk) with b� = η (123)

for all t ∈ [ťpk, ť
p
k+1), k ∈ N, and

W p(t) ≥ 0, i.e., V p(t) ≤ e−b�tV0 with b� = η (124)

for all t > 0 whereas mp(t) governed by (78) satisfies

mp(t) ≥ mp(ťpk)e
−η(t−ťpk)

− θmH(ťpk)

�� + η
e−η(t−ťpk)

(
e(�

�+η)(t−ťpk) − 1
)

(125)
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for all t ∈ [ťpk, ť
p
k+1), j ∈ N.

Proof: Let us consider the following positive-definite func-
tion:

V̄ (t) :=∫ �

0

(
1

v�
α2(x, t)e−

μx
v� +

r20
(γp�− v�)

β2(x, t)e
μx

(γp�−v�)

)
dx

(126)

where μ > 0. Taking the time derivative of (126), integrating by
parts, and recalling (38), we can obtain

˙̄V (t) = − μV̄ (t)− e−
μ�
v� α2(�, t) + r20r

2
1e

μ�
(γp�−v�) d2(t)

≤ r20r
2
1e

μ�
(γp�−v�) d2(t) (127)

for all t ∈ (ťpk, ť
p
k+1), j ∈ N. Using the Young’s and Cauchy–

Schwarz inequalities on (34) and recalling (72) and (126), we
obtain that

d2(t) ≤ 4L̃21

r21

∫ �

0

α2(y, ťpk)dy +
4L̃22

r21

∫ �

0

β2(y, ťpk)dy

+
4L̃21

r21

∫ �

0

α2(y, t)dy +
4L̃22

r21

∫ �

0

β2(y, t)dy

≤ 4v�L̃21e
μ�
v�

r21

∫ �

0

1

v�
α2(y, ťpk)e

−μy
v� dy

+
4(γp�− v�)L̃22

r20r
2
1

∫ �

0

r20
(γp�− v�)

β2(y, ťpk)e
μy

(γp�−v�) dy

+
4v�L̃21e

μ�
v�

r21

∫ �

0

1

v�
α2(y, t)e−

μy
v� dy

+
4(γp�− v�)L̃22

r20r
2
1

∫ �

0

r20
(γp� − v�)

β2(y, t)e
μy

(γp�−v�) dy

≤ �V̄ (ťpk) + �V̄ (t), (128)

for all t ∈ (ťpk, ť
p
k+1), j ∈ N, where � is given by (71). Thus, it

follows from (127) that

˙̄V (t) ≤ ��V̄ (ťpk) + ��V̄ (t) (129)

for all t ∈ (ťpk, ť
p
k+1), j ∈ N, where �� is given by (70), from

which we obtain

V̄ (t) ≤ 2V̄ (ťpk)e
��(t−ťpk) − V̄ (ťpk)

≤ 2V̄ (ťpk)e
��(t−ťpk) (130)

for all t ∈ [ťpk, ť
p
k+1], j ∈ N. Therefore, considering (128), we

obtain

d2(t) ≤ �V (ťpk) + 2�V (ťpk)e
��(t−ťpk) (131)

≤ 3�V (ťpk)e
��(t−ťpk) (132)

which leads to (122). Similar to Lemma 4, we can show that
W p(t) ≥ 0, i.e., e−b�tV p

0 ≥ V p(t) for any t > 0 with η = b�

under the P-STC approach (117)–(121). Thus, considering the
dynamics of mp(t) given by (78) and relation (122), we can
show

ṁp(t) ≥ −ηmp(t)− θmH(ťpk)e
��(t−ťpk) (133)

for t ∈ (ťpk, ť
p
k+1), k ∈ N from which we can obtain (125) using

the comparison principle. �
Theorem 5 (Results under P-STC): Let Ǐp = {ťp0, ť

p
1, ť

p
2, . . .}

with ťp0 = 0 be the set of increasing event times generated by the
P-STC approach (117)–(121) with appropriate choices for the
event-trigger parameters under Assumption 2, c > 0, and η > 0
chosen as in (93). Then, the following results hold.

R1: For every (w̄(·, 0), v̄(·, 0))T ∈ L2((0, �);R2), there exists
a unique solution (w̄, v̄)T ∈ C0(R+;L

2((0, �);R2)) to the
P-STC closed-loop system (13)–(15), (17)–(21), and (117)–
(121) for all t > 0.

R2: The function Γp(t) given by (77) satisfies Γp(t) ≤ 0 for all
t > 0, along the P-STC closed-loop solution.

R3: The dynamic variablemp(t)governed by (78) withmp(0) =
mr(0) > 0 satisfies mp(t) > 0 for all t > 0, along the P-STC
closed-loop solution.

R4: The Lyapunov candidate V p(t) given by (80) satisfies (83)
for all t ∈ (ťpk, ť

p
k+1), k ∈ N and (84) for all t > 0 with η =

b�, along the P-STC closed-loop solution.
R5: The closed-loop signal ‖w̄[t]‖+ ‖v̄[t]‖ associated with

the P-STC closed-loop system (13)–(15), (17)–(21), and
(117)–(121), exponentially converges to zero.

Proof: R1 follows from Proposition 1 and Remark 1.
Lemma 6 ensures that W p(t) ≥ 0 for all t > 0 under the chosen
parameters listed in Assumption 2, c > 0 and η = b�. Assume
that an event has triggered at t = ťpk andmp(ťpk) > 0. Then, let us
analyze the behavior ofΓp(t) in t ∈ [ťpk, ť

p
k+1) along the solution

of (13)–(15), (17)–(21), and (117)–(121). After the event at
t = ťpk, the control law is updated, and d(ťpk) = 0. Then, we have
from (77) that

Γp
(
ťpk
)
= −θm

(
ťpk
)
− c

θm
W p(ťpk) < 0. (134)

Consequently, Γp(t)will definitely remain nonpositive until t =
ťpk + τd, where τd is the R/P-CETC minimal dwell-time given
by (52). Further, recalling (123) and (125), we can obtain

θmp(t) +
c

θm
W p(t)

≥ θmp(ťpk)e
−(η+c)(t−ťpk) +

c

θm
e−(η+c)(t−ťpk)W p(ťpk)

− θθmH(ťpk)

�� + η
e�

�(t−ťpk) +
θθmH(ťpk)

�� + η
e−(η+c)(t−ťpk)

:= F (t− ťpk) (135)

for t ∈ [ťpk, ť
p
k+1), k ∈ N. Suppose there exists a positive solu-

tion t† > ťpk such that

H(ťpk)e
��(t†−ťpk) = F (t† − ťpk). (136)

From (122), we know the left-hand side of (136) is an increasing
upper bound for d2(t), and from (135), the right-hand side of
(136) is a decreasing lower bound for θmp(t) + c

θm
W p(t). Con-

sequently, we can be certain that d2(t) ≤ θmp(t) + c
θm

W p(t),

i.e., Γp(t) ≤ 0 for t ∈ [ťpk, t
†). The solution of (136) is

t† = ťpk + τ̌(ťpk) (137)

where τ̌(ťpk) is given by (121). If t† > ťpk + τd, the next event
can be chosen as ťpk+1 = t†. If t† ≤ ťpk + τd, the next event can
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be chosen as ťpk+1 = ťpk + τd. In this way, from (119)–(121),
it is ensured that Γp(t) ≤ 0 for t ∈ [ťpk, ť

p
k+1), as stated in R2.

Applying the similar analysis in the proof of Theorem 4, we can
obtain mp(t) > 0 for all t > 0 as stated in R3, which implies
the positive definiteness of V p(t) and leads to results stated in
R4 and R5. �

V. SIMULATION

A. Simulation Setup

We consider the ARZ model with γ = 1, c0 = 0.396,
and the steady state in congested regime is (ρ�, v�) = (
120 vehicles/km, 36 km/h). We use sinusoid initial condi-
tions given by ρ(x, 0) = 0.1 sin(3πx/�)ρ� + ρ� and v(x, 0) =
−0.1 sin(3πx/�)v� + v�. The length of the freeway section is
� = 1 km. The free speed is vf = 144 km/h and the maximum
density is ρm = 160 vehicles/km. The relaxation time is τ = 2
minutes. We perform the simulation on a time horizon of 60 min.

The parameters for the triggering mechanisms are chosen as
follows: The parameters θ and σ are set to θ = 1 and σ = 0.9,
respectively. The parameters κi are calculated from (44) as
κ1 = 280.76, κ2 = 807.29, and κ3 = 2416.5. The parameter μ
is set to μ = 11.5, and the parameter C is chosen asC = 8897.4
to satisfy (49). The parameter θm, calculated from (48), is
θm = 1.8705× 106. The parameter η is chosen as η = 1.293,
ensuring that η = b, where b is given by (60). The initial condi-
tion of m(t) is chosen as m(0) = 0.1. The MDT τd computed
from (52) is 4.7305× 10−6 h. Thus, we use Δt = 4× 10−6 h
to time-discretize the plant and observer dynamics. Following
(64), we also select 4× 10−6 h as the sampling period for the
PETC approach. Space discretization is performed using a step
size of Δx = 0.005 km.

B. Comparison of System Behavior

In Fig. 2, we compare R-ETC with P-ETC in terms of the
behavior of the Lyapunov function, the control updates, and the
dwell times. We set c = 10 for the P-ETC approaches. It can be
observed that the Lyapunov functions for R-ETC are monotoni-
cally decreasing. Conversely, the Lyapunov functions for P-ETC
approaches sometimes increase, illustrating the flexibility of this
approach. Notably, even though the Lyapunov functions under
P-ETC approaches converge to zero slower than their regular
counterparts, they remain below the performance barrier at all
times, thereby meeting the nominal performance. Due to the
flexibility of P-ETC Lyapunov functions, control updates under
P-CETC and P-PETC are sparser than their regular counterparts.
Meanwhile, P-STC slightly outperforms R-STC in terms of
update sparsity.

We present the evolution of the system’s density, ρ(x, t),
and velocity, v(x, t), under open-loop, R-CETC, and P-CETC
configurations in Fig. 3. The open-loop system exhibits unstable
density-velocity oscillations, as shown in Fig. 3(a) and (b), in-
dicating that vehicles enter acceleration–deceleration cycles in-
fluenced by stop-and-go waves. R-CETC effectively suppresses
these oscillations by applying VSL boundary control at the
end of the road segment. In contrast, P-CETC sacrifices some
suppression of oscillations in favor of sparser triggering, as it
deviates from the strict decrease of the Lyapunov function.

Both R-ETC and P-ETC approaches, derived using the lin-
earized ARZ model, are susceptible to Zeno behavior when

Fig. 2. Comparison of the Lyapunov function, control update and
dwell-times under the R/P-CETC, R/P-PETC and R/P-STC. (a) Results
under R/P-CETC. (b) Results under R/P-PETC. (c) Results under R/P-
STC.

applied to the nonlinear ARZ model because the nonlinear
dynamics were not considered in the exclusion of Zeno behav-
ior. Furthermore, P-ETC approaches (P-CETC, P-PETC, and
P-STC) applied to the nonlinear ARZ model is prone to perfor-
mance barrier violations since nonlinear components are not ac-
counted for in the definition of the performance barrier e−b�tV p

0 ,
the performance residual W p(t) := e−b�tV p

0 − V p(t), or in the
Lyapunov function V p(t).

C. Comparison of System Performance

In Table I, we provide a quantitative comparison of the total
triggering number Nt, the average dwell-time Δ̄tk in minutes,
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Fig. 3. Comparison of ρ(x, t) and v(x, t). (a) ρ(x, t) of open-loop.
(b) v(x, t) of open-loop. (c) ρ(x, t) of R-CETC. (d) v(x, t) of R-CETC.
(e) ρ(x, t) of P-CETC. (f) v(x, t) of P-CETC.

and three traffic performance metrics of the different approaches
at different c values. We adopt traffic performance metrics used
in [48], including total travel time JTTT, fuel consumption Jfuel

and travel discomfort JD to evaluate the proposed methods.
These performance metrics are given by

JTTT =

∫ T

0

∫ �

0

ρ(x, t)dxdt (138)

Jfuel =

∫ T

0

∫ �

0

max
{
0, b0 + b1v(x, t) + b3v

3(x, t)

+b4v(x, t)a(x, t)} ρ(x, t)dxdt (139)

JD =

∫ T

0

∫ �

0

(
a(x, t)2 + at(x, t)

2
)
ρ(x, t)dxdt (140)

where a(x, t) is defined as the local acceleration a(x, t) =
vt(x, t) + v(x, t)vx(x, t) and bi are constant coefficients cho-
sen as b0 = 25 · 10−3[1/s], b1 = 24.5 · 10−6[1/m], b3 = 32.5 ·
10−9[1˜s3/m2], b4 = 125 · 10−6[1˜s2/m2]. Note that higher
values for the three performance metrics correspond to increased
traffic costs, consequently indicating worse traffic performance.
For further details on these traffic metrics, see [35].

The parameter c > 0 can be chosen in P-CETC, P-PETC,
and P-STC to achieve a smaller total triggering number Nt

compared to their regular counterparts. Generally, Nt decreases
as c increases because a larger c provides the Lyapunov function
with greater flexibility to deviate from a monotonic decrease,
making control updates less likely to be triggered.

The average dwell time, denoted as Δ̄tk, serves as a safety
index (SI). For small values of Δ̄tk, drivers exiting the VSL
zone are likely to be required to check and adjust their speed
more frequently in response to rapidly changing VSL signs. As

TABLE I
COMPARISON OF TOTAL TRIGGERING NUMBER Nt, AVERAGE DWELL-TIMES

¯ΔTk IN MINUTES (SAFETY INDEX), AND THREE TRAFFIC PERFORMANCE
METRICS BETWEEN OPEN-LOOP AND R/P-ETCS WITHIN 60 MIN

a consequence, an increased cognitive burden puts safety at risk
and is likely to cause the drivers’ speed adjustment errors. In light
of the SI measure, P-ETC approaches are safer than their regular
counterparts. In summary, Table I demonstrates a correlation
between enhanced safety and an increase of the resource-aware
parameter c. Here, the “resource” being saved is (ironically) the
risk inflicted upon the safety of the drivers. Remarkably, the SI
improvement is 2.9×, 2.9×, and 1.3× for P-CETC, P-PETC,
and P-STC, respectively, relative to their regular counterparts.

The comparison of the three performance metrics of the pro-
posed methods is listed in the Table I. The total travel time (JTTT)
and fuel consumption (Jfuel) for the three P-ETC approaches are
reduced by at least 1% compared to the open-loop system, with
the influence of c being negligible, which is consistent with their
R-ETC counterparts. Hence, reducing stop-and-go traffic has
almost no effect on fuel consumption or travel time, at least for
the linear ARZ model. The travel discomfort (JD) is significantly
reduced by both the R/P-CETC and R/P-PETC approaches
compared to the open-loop system, with reductions ranging
between 45% and 80%, as the controls suppress stop-and-go
oscillations in the closed-loop system. The largest decrease in
travel discomfort (JD) is observed with the R/P-STC approach,
which achieves a reduction of around 92% compared to the
open-loop system. This is because R/P-STC results in frequent
control updates, closely emulating continuous-time control.

Even though the travel discomfort somewhat increases with
larger c for P-CETC and P-PETC compared with their regular
counterparts, they still achieve a considerable discomfort re-
duction compared with the open-loop control. Therefore, when
selecting the parameter c for P-ETC, a balance should be sought
between system performance metrics. The increasing c has no
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adverse effect on the traffic metrics when contrasting R-STC
with P-STC. In the cases of P-CETC and P-PETC, they may ac-
complish fewer Nt and better safety at the expense of somewhat
increased but still satisfactory travel discomfort.

In conclusion, the proposed P-ETCs reduce travel discomfort
by 45%–92% relative to driver’s natural behavior (open-loop)
and increase driver safety, measured by the average dwell time,
by as much as 2.9× relative to their regular counterparts with
the frequent-switching VSL schedule.

VI. CONCLUSION

This article has employed the recently introduced ETC ap-
proach known as P-ETC to control the linearized ARZ traffic
model, a 2 × 2 coupled hyperbolic PDE equipped with a
VSL. We have explored P-ETC across three configurations: 1)
P-CETC; 2) P-PETC; and 3) P-STC. Unlike the existing regular
ETC (R-ETC), where the closed-loop system’s Lyapunov func-
tion is forced to decrease constantly, the proposed P-ETC allows
the Lyapunov function of the closed-loop system to deviate from
strict monotonic decrease, provided it remains below an ac-
ceptable performance barrier. This flexibility results in extended
dwell times between events compared with R-ETC. We have also
presented PETC and STC variants of R-ETC, which have not
been previously explored for coupled hyperbolic PDEs. We have
demonstrated that all proposed control approaches guarantee
exponential convergence to zero in the spatial L2 norm while
ensuring Zeno-free behavior. The performance of the proposed
methods has been illustrated through numerical simulations, and
extensive comparisons between different methods have been
provided, focusing on triggering number, driver’s safety, and
traffic metrics, such as vehicle fuel consumption, total travel
time, and driver comfort.

For future work, we aim to investigate ETC under quantization
effects for traffic phenomena, which may enable more practical
advisory speeds with VSLs. Furthermore, ETC for nonlinear
ARZ PDEs is of interest, as nonlinear effects in traffic flow
phenomena were not considered in this work.

REFERENCES

[1] A. Aw and M. Rascle, “Resurrection of second order models of traffic
flow,” SIAM J. Appl. Math., vol. 60, no. 3, pp. 916–938, Jan. 2000.

[2] G. Bastin, J.-M. Coron, A. Hayat, and P. Shang, “Exponential boundary
feedback stabilization of a shock steady state for the inviscid Burger’s
equation,” Math. Models Methods Appl. Sci., vol. 29, no. 02, pp. 271–316,
2019.

[3] A. M. Bayen, R. L. Raffard, and C. J. Tomlin, “Network congestion
alleviation using adjoint hybrid control: Application to highways,” in Proc.
Int. Workshop Hybrid Syst.: Comput. Control, 2004, pp. 95–110.

[4] N. Bekiaris-Liberis and A. I. Delis, “PDE-based feedback control of
freeway traffic flow via time-gap manipulation of ACC-equipped vehicles,”
IEEE Trans. Control Syst. Technol., vol. 29, no. 1, pp. 461–469, Jan. 2021.

[5] M. A. Davó, D. Bresch-Pietri, C. Prieur, and F. Di Meglio, “Stability
analysis of a 2× 2 linear hyperbolic system with a sampled-data controller
via backstepping method and looped-functionals,” IEEE Trans. Autom.
Control, vol. 64, no. 4, pp. 1718–1725, 2019.

[6] M. Diagne and I. Karafyllis, “Event-triggered boundary control of a con-
tinuum model of highly re-entrant manufacturing systems,” Automatica,
vol. 134, 2021, Art. no. 109902.

[7] N. Espitia, “Observer-based event-triggered boundary control of a linear
2 × 2 hyperbolic systems,” Syst. Control Lett., vol. 138, Apr. 2020,
Art. no. 104668.

[8] N. Espitia, J. Auriol, H. Yu, and M. Krstic, “Traffic flow control on cas-
caded roads by event-triggered output feedback,” Int. J. Robust Nonlinear
Control, vol. 32, no. 10, pp. 5919–5949, Jul. 2022.

[9] N. Espitia, A. Girard, N. Marchand, and C. Prieur, “Event-based boundary
control of a linear 2× 2 hyperbolic system via backstepping approach,”
IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2686–2693, Aug. 2018.

[10] N. Espitia, I. Karafyllis, and M. Krstic, “Event-triggered boundary control
of constant-parameter reaction–diffusion PDEs: A small-gain approach,”
Automatica, vol. 128, 2021, Art. no. 109562.

[11] N. Espitia, H. Yu, and M. Krstic, “Event-triggered varying speed limit
control of stop-and-go traffic,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 7509–7514, 2020.

[12] E. Fridman and A. Blighovsky, “Robust sampled-data control of a class
of semilinear parabolic systems,” Automatica, vol. 48, no. 5, pp. 826–836,
2012.

[13] A. Girard, “Dynamic triggering mechanisms for event-triggered control,”
IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, Jul. 2015.

[14] B. D. Greenshields, J. R. Bibbins, W. S. Channing, and H. H. Miller, “A
study of traffic capacity,” Highway Res. Board Proc., vol. 14, pp. 448–477,
1935.

[15] M. Gugat, M. Herty, A. Klar, and G. Leugering, “Optimal control for traffic
flow networks,” J. Optim. Theory Appl., vol. 126, no. 3, pp. 589–616, 2005.

[16] W. P. M. H. Heemels, M. C. F. Donkers, and A. R. Teel, “Periodic event-
triggered control for linear systems,” IEEE Trans. Autom. Control, vol. 58,
no. 4, pp. 847–861, Apr. 2013.

[17] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in Proc. IEEE 51st IEEE Conf. Decis.
Control, Dec. 2012, pp. 3270–3285.

[18] I. Karafyllis, N. Bekiaris-Liberis, and M. Papageorgiou, “Feedback control
of nonlinear hyperbolic PDE systems inspired by traffic flow models,”
IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3647–3662, Sep. 2019.

[19] I. Karafyllis and M. Krstic, “Sampled-data boundary feedback control
of 1-D linear transport PDEs with non-local terms,” Syst. Control Lett.,
vol. 107, pp. 68–75, 2017.

[20] I. Karafyllis and M. Krstic, “Sampled-data boundary feedback control of
1-D parabolic PDEs,” Automatica, vol. 87, pp. 226–237, 2018.

[21] I. Karafyllis and M. Papageorgiou, “Feedback control of scalar conser-
vation laws with application to density control in freeways by means of
variable speed limits,” Automatica, vol. 105, pp. 228–236, 2019.

[22] R. Katz and E. Fridman, “Sampled-data finite-dimensional boundary
control of 1-D parabolic PDEs under point measurement via a novel ISS
halanay’s inequality,” Automatica, vol. 135, 2022, Art. no. 109966.

[23] R. Katz, E. Fridman, and A. Selivanov, “Boundary delayed observer-
controller design for reaction–diffusion systems,” IEEE Trans. Autom.
Control, vol. 66, no. 1, pp. 275–282, Jan. 2021.

[24] P. Ong and J. Cortés, “Performance-barrier-based event-triggered control
with applications to network systems,” IEEE Trans. Autom. Control,
vol. 69, no. 7, pp. 4230–4244, Jul. 2024.

[25] H. J. Payne, “Model of freeway traffic and control,” in Proc. Math. Model
Public Syst. Simul Council, 1971, pp. 51–61.

[26] J. Qi, S. Mo, and M. Krstic, “Delay-compensated distributed PDE con-
trol of traffic with connected/automated vehicles,” IEEE Trans. Autom.
Control, vol. 68, no. 4, pp. 2229–2244, Apr. 2023.

[27] B. Rathnayake and M. Diagne, “Observer-based periodic event-triggered
boundary control of the one-phase Stefan problem,” IFAC-PapersOnLine,
vol. 56, no. 2, pp. 11415–11422, 2023.

[28] B. Rathnayake and M. Diagne, “Observer-based event-triggered boundary
control of the one-phase Stefan problem,” Int. J. Control, vol. 97, no. 12,
pp. 2975–2986, 2024.

[29] B. Rathnayake and M. Diagne, “Observer-based periodic event-triggered
and self-triggered boundary control of a class of parabolic PDEs,” IEEE
Trans. Autom. Control, vol. 69, no. 12, pp. 8836–8843, Dec. 2024.

[30] B. Rathnayake, M. Diagne, J. Cortés, and M. Krstic, “Performance-barrier
event-triggered control of a class of reaction–diffusion PDEs,” Automatica,
vol. 174, 2025, Art. no. 112181.

[31] B. Rathnayake, M. Diagne, N. Espitia, and I. Karafyllis, “Observer-
based event-triggered boundary control of a class of reaction–diffusion
PDEs,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 2905–2917,
Jun. 2022.

[32] B. Rathnayake, M. Diagne, and I. Karafyllis, “Sampled-data and event-
triggered boundary control of a class of reaction–diffusion PDEs
with collocated sensing and actuation,” Automatica, vol. 137, 2022,
Art. no. 110026.

[33] T. B. Sheridan, “Driver distraction from a control theory perspective,”
Hum. Factors, vol. 46, no. 4, pp. 587–599, 2004.

[34] A. Terrand-Jeanne, V. Andrieu, V. D. S. Martins, and C.-Z. Xu, “Adding
integral action for open-loop exponentially stable semigroups and appli-
cation to boundary control of PDE systems,” IEEE Trans. Autom. Control,
vol. 65, no. 11, pp. 4481–4492, Nov. 2020.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 30,2025 at 01:25:53 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: PERFORMANCE-BARRIER EVENT-TRIGGERED PDE CONTROL OF TRAFFIC FLOW 5735

[35] M. Treiber and A. Kesting, Traffic Flow Dynamics: Data, Models Simu-
lation. Berlin, Heidelberg: Springer-Verlag, 2013.

[36] R. Vazquez, M. Krstic, and J.-M. Coron, “Backstepping boundary stabi-
lization and state estimation of a 2× 2 linear hyperbolic system,” in Proc.
50th IEEE Conf Decis. Control Eur. Control Conf., 2011, pp. 4937–4942.

[37] M. Wakaiki and H. Sano, “Event-triggered control of infinite-dimensional
systems,” SIAM J. Control Optim., vol. 58, no. 2, pp. 605–635, Jan. 2020.

[38] M. Wakaiki and H. Sano, “Stability analysis of infinite-dimensional event-
triggered and self-triggered control systems with Lipschitz perturbations,”
Math. Control Related Fields, vol. 12, no. 1, pp. 245–273, 2022.

[39] J. Wang and M. Krstic, “Event-triggered adaptive control of a parabolic
PDE-ODE Cascade with piecewise-constant inputs and identification,”
IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5493–5508, Sep. 2023.

[40] J. Wang and M. Krstic, “Event-triggered adaptive control of coupled
hyperbolic PDEs with piecewise-constant inputs and identification,” IEEE
Trans. Autom. Control, vol. 68, no. 3, pp. 1568–1583, Mar. 2023.
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