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Stabilization of Predator–Prey Age-Structured
Hyperbolic PDE When Harvesting Both

Species is Inevitable
Carina Veil , Member, IEEE, Miroslav Krstić , Fellow, IEEE, Iasson Karafyllis ,

Mamadou Diagne , Senior Member, IEEE, and Oliver Sawodny , Senior Member, IEEE

Abstract—Populations (in ecology, epidemics, biotech-
nology, economics, and social processes) not only interact
over time but also age over time. It is therefore common
to model them as “age-structured” partial differential equa-
tions (PDEs), where age is the “space variable.” Since the
models also involve integrals over age, both in the birth
process and in the interaction among species, they are
in fact integro-partial differential equations (IPDEs) with
positive states. To regulate the population densities to de-
sired profiles, harvesting is used as input. However, nondis-
criminating harvesting, where wanting to repress one
(overpopulated) species will inevitably repress the other
(near-extinct) species as well, the positivity restriction
on the input (no insertion of population, only removal),
and the multiplicative (nonlinear) nature of harvesting,
makes control challenging even for ordinary differential
equation (ODE) versions of such dynamics, let alone for
their IPDE versions, on an infinite-dimensional nonnegative
state space. With this article, we introduce a design for a
benchmark version of such a problem: a two-population
predator–prey setup. The model is equivalent to two cou-
pled ODEs, actuated by harvesting, which must not drop
below zero, and strongly (“exponentially”) disturbed by two
autonomous but exponentially stable integral delay equa-
tions (IDEs). We develop two control designs. With a mod-
ified Volterra-like control Lyapunov function, we design a
simple feedback that employs possibly negative harvesting
for global stabilization of the ODE model while guaran-
teeing regional regulation with positive harvesting. With a
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more sophisticated, restrained controller, we achieve reg-
ulation for the ODE model globally, with positive harvest-
ing. For the full IPDE model, with the IDE dynamics act-
ing as large disturbances, for both the simple and satu-
rated feedback laws, we provide explicit estimates of the
regions of attraction. Simulations illustrate the nonlinear
infinite-dimensional solutions under the two feedback. This
article charts a new pathway for control designs for infinite-
dimensional multispecies dynamics and for nonlinear pos-
itive systems with positive controls.

Index Terms—Age-structured population systems, posi-
tive systems, nonlinear PDEs, control Lyapunov functions.

I. INTRODUCTION

TO EXPLAIN fluctuations of past living populations or
predict their future growth, age-structured models serve

diverse and rich scientific purposes to describe the evolution of
biologically renewable populations over time. Structured around
age cohorts and involving integrals over age, these models lead to
a set of nonlinear integro-partial differential equations (IPDEs)
with positive states, describing the dynamics of subpopulations
coupled by the law of mass action, a law that governs their
contact rate or mixing capabilities [14]. Further, the population
dynamics of each species is affected by the natural birth and
death rates, which may vary depending on age and, potentially,
time.

Many processes in biotechnology, demography, or biology
exhibit behavior that can be modeled as age-structured pop-
ulation dynamics [6], [11], [19], [32], [35]. For instance, the
link between demography and economics, the prediction of the
impact of demographic shifts on workforce dynamics, health-
care demand, and social security systems can be achieved by
exploiting age-structured population models parameterized by
an age- and time-dependent consumption and total value in
assets [10], [41]. These models are also exploited to understand
the contagion of criminal behaviors in carceral environments
and allow to implement age-structured correctional intervention
measures [17], [40], or in other cases, favor the development of
more equitable educational strategies when facing a population
growth or demographic shifts [30].

The behavior of such populations can be studied through
chemostat models, where fresh nutrient solution is fed to the
biomass-nutrient-mixture at the same rate as it is extracted. To
achieve the desired amount of biomass, this rate is used as control
input, which makes harvesting and dilution synonyms in this
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context. Whereas single population models are, for example,
used to improve the performance of bioreactors for insulin
production [4], [39], more advanced models describing multiple
interacting populations are of special interest for wastewater
treatment [3], [7] or protein synthesis, where plasmid-bearing
and plasmid-free bacteria compete [28], [43]. So far, said pro-
cesses are mainly modeled with ordinary differential equations
(ODEs). Age-structured or spatially structured population mod-
els with more than one population are encountered in ecological
models or epidemics [16], [33], [34], but their control related
studies are limited. The main challenge lies in the input to the
system being the inevitable harvesting of all species, both over-
populated and underpopulated ones, which poses a challenge for
stabilization.

A. Related Work: Control of Population Models

Generally consisting of a single population, chemostats are
very interesting from a control perspective, as they present as
nonlinear control problems with input constraints (positive dilu-
tion) and inequality state constraints (positive populations) [8].
Actuation by dilution in chemostat interacting populations is
analogous to the use of pesticides or insecticides in an ecological
predator–prey situation [36]. Here, for clarity, we use the term
“dilution” to align with terminology from our previous works
developed along similar lines.

Existing studies on nonlinear infinite-dimensional population
models stratified by age cohorts often focus on susceptible–
infected–recovered (SIR)-like epidemic models and are pri-
marily limited to open-loop stability analysis. These studies
typically guarantee asymptotic convergence under restrictive
conditions on model parameters [18], [29]. In addition to the
optimal control method proposed in [1], [5], and [9], a rela-
tively old contribution developed a pharmaceutical interventions
feedback law, associated with the rate of vaccination to control
“reduced-order” age-structure SIR model for Varicella and Her-
pes Zoste [2]. In recent years, the link of chemostat models to
epidemics became particularly prevalent to study the spread of
infectious diseases, i.e., considering the biomass as the infected
population and the dilution as the treatment for the disease [39].

The nonlinear infinite-dimensional change of variables intro-
duced in [22] has been the basis of most control design and
stability analysis of single population models, including the
effects of intraspecific competition or actuator dynamics [12],
[25]. Essentially, the output feedback law contribution from [22]
stabilizes a single age-structured population system that is neu-
trally stable in an open loop by introducing self-competition
terms in the closed-loop system. Single population models are,
for example, used to control the dilution rate of the chemostat
such that the biomass follows certain trajectories in order to
maximize the yield of the process [24], [25], [26], [37].

Multispecies population models with age structure, leading
to coupled IPDEs, have received little attention in the literature.
In previous works, we presented a model of two interacting
populations in a chemostat with both intra- and interspecific
competition terms [27]. Key similarities between this work
and [27] lie in the definition of the contact rate, which is derived
from the law of mass action [14]. In both cases, the distributed
“reaction term” influences both subpopulations, with mutual
interactions between them. In addition, both models require the
inevitable harvesting of both populations as input, which makes
stabilization challenging as diluting the entire population may

promote the stability of the overpopulated species while pos-
sibly having unintended, detrimental effects on the stability of
the underpopulated species. However, there remains important
key distinctions between the two problems: The IPDE model
in [27] includes additive self-competition terms that enhance the
stability of age-dependent PDE population model and may result
open-loop stability of the family of equilibria. Such stabilizing
internal feedback is absent in the present work. Instead of com-
petition terms, our marginally stable model has skew-symmetric
interactions of the two interacting populations in a predator–prey
setup, which leads to steady-state oscillations with imaginary
open-loop poles. Last but not the least, Kurth et al. [27] dealt
with a tracking problem while the present contribution focuses
on a setpoint stabilization problem.

B. Contributions

The first contribution we list here is an obvious one: this
is the first set of results on the stabilization of age-structured
population dynamics with more than one species. Kurth et al.
[27] dealt with open-loop motion planning for two species but
does not pursue stabilization.

To develop the first stabilizing feedback for multispecies
age-structured population dynamics, we face several challenges
in the control design and analysis. The system consists of IPDEs,
which are nonlinear, must maintain positive states, and the
control applied to them must remain positive. In addition, the
dilution actuation, which is not species specific, is a challenge
for control design, as one must either harvest both species or
neither, regardless of the imbalance among them. However, the
greatest of innovation required in the control design, relative to
the existing feedback design methods, is that the control must
remain positive, namely, saturated from below. The limits to
global stabilizability of systems with saturated control are well
known, including that the open-loop plant must not be exponen-
tially unstable. Our predator–prey model is not exponentially
unstable indeed, but it is nothing like feedforward systems for
which saturation-based designs exist. The model does not even
involve any integrators chains—the basis for stabilizability of
both feedforward and strict-feedback systems. We introduce
both new control Lyapunov functions (CLFs) and new nonlinear
positive feedback laws for these positive infinite-dimensional
nonlinear systems.

Our design methodology uses state transformations, as in [22],
to convert the nonlinear predator–prey IPDE system into two
coupled nonlinear ODEs. Unlike the single-species model
in [22], the ODE for two interacting species is strongly (“ex-
ponentially”) disturbed by two autonomous but exponentially
stable integral delay equations (IDEs).

For such an ODE+IDE system, we present two control de-
signs, with two theorems established for each of the designs. The
first control design is a simpleLgV type of a design for the ODE
model and for a CLF we construct. Due to its simplicity, the first
controller achieves global stability but without a guarantee that
its input remains positive for all initial conditions (ICs). For the
IPDE model to which this first controller is applied, we estimate
the region of attraction in this system’s infinite-dimensional state
space.

Our second feedback design is more complex to guarantee
positivity of the input. For the ODE model, the second controller
is globally stabilizing, whereas for the IPDE model, we estimate
the origin’s region of attraction.
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With these two control designs, and the resulting four theo-
rems, we present a repertoire of possibilities in feedback syn-
thesis and stability analysis for age-structured multipopulation
models. What we do not achieve, as it is impossible because of
the disturbing effect of the IDE dynamics on the ODE model,
is global stability for the IPDE model. Region of attraction esti-
mates is the best one can get for the stabilization of multispecies
age-structured population dynamics.

For the predator–prey system with a dilution input, a small
innovation in the Lyapunov function development suffices, rel-
ative to the existing Volterra Lyapunov (VL) functions. The VL
functions employ exponential and linear functions of the state
variables for the study of stability of Lotka–Volterra population
models [15]. Lyapunov functions of that form also appear in [31],
which is inspired by populations models but not dealing directly
with models recognized in the literature as actual population
dynamics. Our CLFs in this article have an appearance of VL
functions, but they include crucial modifications, in the form of
weighing more strongly the predator state relative to the prey
state. The CLFs we design are unusable for the study of (the
neutral) stability of the open-loop predator–prey system, but
they are crucial for enabling our design of an asymptotically
stabilizing feedback for the system.

Added Value Relative to the Paper’s Conference Version: This
article is a journal version of our conference submission [42],
which contains a small subset of the results given here. The jour-
nal version’s added value includes about nine pages of additional
material: more advanced feedback design with positive dilution
control (Theorems 3 and 4), as negative dilution amounts to
introducing population to the system, is not practically feasible,
more detailed proofs, discussions, and, lastly, more simulations.

Organization: The rest of this article is organized as follows.
Section II introduces the model, its steady states, and the system
transformation. In Section III, we consider the ODE system,
provide an open-loop stability analysis, and present a first
CLF-based feedback law with unrestricted dilution that globally
stabilizes the ODE system, but only ensures positive dilution
regionally. In Section IV, we establish that this CLF-based
control law also locally stabilizes the full ODE-IDE system
and provides an explicit estimate of the region of attraction.
To guarantee positive dilution, we introduce an enhancement of
our control law in Section V, and show in Section VI that it also
locally stabilizes the full ODE-IDE system while the dilution
input remains positive at all times. Simulations are presented in
Section VII. Finally, Section VIII concludes this article.

Notations: K is the class of all strictly increasing functions
a ∈ C0(R+;R+), with a(0) = 0. KL is the class of functions
β : R+ × R+ → R+ that satisfy the following: For each t ≥
0, the mapping β(·, t) is of class K, and, for each s ≥ 0, the
mapping β(s, ·) is nonincreasing with limt→∞ β(s, t) = 0 (see
[20] and [23]). Further, the index i will always refer to i = 1, 2
throughout the manuscript.

II. SYSTEM MODEL

The age-structured predator–prey model (see Fig. 1) with ICs
and boundary conditions (BCs) is given by

ẋ1(a, t) + x′1(a, t) = − x1(a, t)

[
μ1(a) + u(t)

Fig. 1. Prey x1 and predator x2 interact via the terms gi. Each species
is affected by mortality μi and new population can only enter the system
through birth ki. The dilution input u has a repressive effect on both
species: harvesting both species is inevitable and represents a chal-
lenge for stabilization.

+

∫ A

0

g1(α)x2(α, t) dα

]
(1a)

ẋ2(a, t) + x′2(a, t) = − x2(a, t)

[
μ2(a) + u(t)

+
1∫ A

0 g2(α)x1(α, t) dα

]
(1b)

IC : xi(a, 0) = xi,0(a) (1c)

BC : xi(0, t) =

∫ A

0

ki(a)xi(a, t) da (1d)

where, for i, j ∈ {1, 2}, i �= j, xi(a, t) > 0 is the population
density, i.e., the amount of organisms of a certain age a ∈ [0, A]
of the two interacting populations x1(a, t) and x2(a, t) with
(a, t) ∈ R+ × [0, A], their derivatives ẋi with respect to time
and x′i with respect to age, and the constant maximum age A >
0. The interaction kernels gi(a) : [0, A] → R

+
0 , the mortality

rates μi(a) : [0, A] → R
+
0 , and the birth rates ki(a) : [0, A] →

R
+
0 are functions with

∫ A
0 μi(a) da > 0,

∫ A
0 gi(a) da > 0, and∫ A

0 ki(a) da > 0. The dilution rate u(t) : R+ → R
+
0 is an input

affecting both species.
System (1) describes a predator–prey population dynamics

where x1 is the prey and x2 is the predator. When x2 is large,
x1 is being reduced (1a), and conversely, when x1 is small,
x2 is being reduced (1b). The choice of the response function
(
∫ A
0 g2(α)x1(α, t) dα)

−1 is designed for controlled population
systems where alternative survival strategies can be neglected,
particularly in biotechnological applications. Importantly, (1)
exhibits periodic solutions, and its states are functions of a ∈
[0, A] with values xi at time t, which belong to the function
spaces Fi, i = 1, 2

Fi =

{
ξ ∈ PC1([0, A]; (0,∞)) : ξ(0) =

∫ A

0

ki(a)ξ(a) da

}
.

(2)

For any subset S ⊆ R and for any A > 0, PC1([0, A];S) de-
notes the class of all functions f ∈ C0([0, A];S) for which
there exists a finite (or empty) set B ⊂ (0, A) such that: 1) the
derivative x′(a) exists at every a ∈ (0, A)\B and is a continuous
function on (0, A)\B and 2) all meaningful right and left limits
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of x′(a) when a tends to a point in B ∪ {0, A} exist and are
finite.

A. Steady-State Analysis

In order to determine the equilibria of (1), the following
lemma is needed.

Lemma 1 (Lotka–Sharpe condition [38]): The equations∫ A

0

k̃i(a) da = 1, i = 1, 2 (3)

with

k̃i(a) = ki(a)e
− ∫ a

0 (μi(s)+ζi) ds (4)

have unique real-valued solutions ζ1(k1, μ1) and ζ2(k2, μ2),
which depend on the birth rates k1 and k2 and mortality rates
μ1 and μ2.

Proposition 1 (Equilibrium): The equilibrium state (x∗1(a),
x∗2(a)) of the population system (1), along with the equilibrium
dilution input u∗, is given by

x∗i (a) = x∗i (0) e
−∫ a

0 (ζi+μi(s)) ds︸ ︷︷ ︸
x̃∗
i(a)

(5a)

u∗ = ζ1 − λ2 = ζ2 − 1

λ1
∈ (0,min {ζ1, ζ2}) (5b)

with unique parameters ζi(ki, μi) resulting from the Lotka–
Sharpe condition of Lemma 1

λi(u
∗) :=

∫ A

0

gj(a)x
∗
i (a) da > 0 (5c)

and the positive concentrations of the newborns

x∗1(0) =
1

(ζ2 − u∗)
∫ A
0 g2(a)x̃∗1(a) da

> 0 (6a)

x∗2(0) =
ζ1 − u∗∫ A

0 g1(a)x̃∗2(a) da
> 0 . (6b)

Remark 1: It is interesting to observe from (6) that, as the
equilibrium dilution u∗ grows, the equilibrium population of the
predators decreases, unsurprisingly, but the equilibrium popula-
tion of the prey increases. The greater the collective harvesting,
the more the prey benefit! �

Proof of Proposition 1: Neglecting the time dependence in
(1) results in the constant dilution rate u∗ and interaction terms,
which are merged in the parameters ζi

0 = −x∗′i (a)− x∗i (a) (μi(a) + ζi) =: D∗
ix

∗
i (a) (7a)

ζ1 := u∗ +
∫ A

0

g1(a)x
∗
2(a) da = u∗ + λ2 (7b)

ζ2 := u∗ +
1∫ A

0 g2(a)x∗1(a) da
= u∗ +

1

λ1
(7c)

x∗i (0) =
∫ A

0

ki(a)x
∗
i (a) da. (7d)

The steady-state profiles (5a) result from solving (7a) defined
with the differential operator D∗

i for arbitrary ICs x∗i (0). Insert-
ing the solutions into the BCs (1d) results in the Lotka–Sharpe
condition and unique real-valued parameters ζi. The definition

of ζi contains the same steady-state input u∗ for i ∈ {1, 2}.
Equating both conditions (5b), introducing the parameters λi
(5c), and solving for the ICs restrict possible steady-state by
constrained ICs x∗i (0) (6) that ensure a positive steady-state
dilution u∗. �

B. System Transformation

In a next step, the PDE system (1) is transformed into two
coupled ODEs that are actuated by the dilution rate and two au-
tonomous but exponentially stable IDEs as a basis for designing
a stabilizing feedback law. To get there, the relationship between
hyperbolic PDEs and IDEs is exploited.

Lemma 2: Every solution of the population system (1) is of
the form

xi(a, t) = e−
∫ a
0 μi(α) dα+

∫ t
t−aw1,i(τ)dτw2,i(t− a) (8)

and corresponds to a solution of the coupled IDEs

w1,1 = −u(t)

−
∫ A

0

g1(α)e
− ∫ a

0 μ2(s) ds+
∫ a
t−aw1,2(s) dsw2,2(t− a) da,

(9a)

w1,2 = −u(t)

− 1∫ A
0 g2(a)e

− ∫ a
0 μ1(s) ds+

∫ a
t−aw1,1(s) dsw2,1(t− a) da

,

(9b)

w2,i =

∫ A

0

ki(a)e
−μi(s) ds+

∫ a
t−aw1,i(s) dsw2,i(t− a) da (9c)

with ICsw1,i(−q) = 0 andw2,i(q) = e
∫ q
0 μi(s) dsxi,0(q) for q ∈

[0, A].
Proof: Redefining the input as

ũ1(t) = u(t) +

∫ A

0

g1(a)x2(a, t) da (10a)

ũ2(t) = u(t) +
1∫ A

0 g2(a)x1(a, t) da
(10b)

decouples the dynamics. Then, Theorem 3.1 from [21] is ap-
plied, defining the IDEs in dependence of hyperbolic PDEs
with arbitrary parameters. In a last step, the original input is
resubstituted. �

Now, this relationship between hyperbolic PDEs and IDEs
from Lemma 2 is exploited to split off a 2-D ODE from the
infinite-dimensional IPDEs (1a) and (1b) by a system transfor-
mation.

Proposition 2 (System transformation): Consider the map-
ping ⎡

⎢⎢⎣
η1(t)

η2(t)

ψ1(t− a)

ψ2(t− a)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ln (Π1[x1](t))

ln (Π2[x2](t))
x1(a,t)

x∗
1(a)Π1[x1](t)

− 1
x2(a,t)

x∗
2(a)Π2[x2](t)

− 1

⎤
⎥⎥⎥⎦ (11)

defined with the functionals

Πi[xi](t) =

∫ A
0 π0,i(a)xi(a, t) da∫ A
0 aki(a)x∗i (a) da

(12)
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where

π0,i(a) =

∫ A

a

ki(s)e
∫ a
s ζi+μi(l) dl ds (13)

are the adjoint eigenfunctions to the zero eigenvalue of the
adjoint differential operator [37]

D∗
iπ0,i(a) =

dπ0,i(a)

da
− (μi(a) + ζi)π0,i(a) + ki(a)π0,i(0).

(14)

The transformed variables satisfy the transformed system

η̇1(t) = ζ1 − u(t)

− eη2(t)
∫ A

0

g1(a)x
∗
2(a) (1 + ψ2(t− a)) da

(15a)

η̇2(t) = ζ2 − u(t)

− e−η1(t)∫ A
0 g2(a)x∗1(a) (1 + ψ1(t− a)) da

(15b)

ψi(t) =

∫ A

0

k̃i(a)ψi(t− a) da (15c)

ηi(0) = ln (Π[xi,0]) =: ηi,0 (15d)

ψi(−a) = xi,0(a)

x∗i (a)Π[xi,0]
− 1 =: ψi,0(a) (15e)

with i = 1, 2, and the unique solution of system (1) is given by

xi(a, t) = x∗i (a)e
ηi(t)(1 + ψi(t− a)). (16)

Let us now explain the importance of transformation (11)
and its significance for the existence/uniqueness of solu-
tions problem for (1). Proposition 2 shows that the exis-
tence/uniqueness of solutions problem for (1) is equivalent to
the existence/uniqueness of solutions problem for (15). Exis-
tence, uniqueness, and basic estimates for the ψ-components
of the solution, i.e., existence and uniqueness for (15c) and
(15e), are guaranteed by the results contained in [22, Sect. 4]
(which exploits existence/uniqueness results for linear neutral
delay equations in [13]). Having obtained in a unique way the
ψ-components of the solutions for all t ≥ 0, we can deal with
the existence/uniqueness problem for (15a), (15b), and (15d).
The ODE system (15a) and (15b) can be seen as a standard
time-varying ODE system (where time variance is a result of
the substitution of the ψ-components of the solutions). There-
fore, we can say that every input u (closed-loop or open-loop)
guarantees the existence/uniqueness of solutions for (15a) and
(15b), and t ≥ 0 also guarantees the existence/uniqueness of
solutions for (1).

Proof of Proposition 2: Deriving the states ηi with respect
to time yields

η̇i(t) =
Π̇i[xi](t)

Πi[xi](t)
=

∫ A
0 π0,i(a)ẋi(a, t) da∫ A
0 π0,i(a)xi(a, t) da

(17)

whose numerators can be rewritten as∫ A

0

π0,i(a)ẋi(a, t) da=

∫ A

0

π0,i(a), xi(a, t) da (w1,i(t)+ζi)

(18)

by applying Green’s Lemma. Inserting this result into (17) yields

η̇i(t) = ζi + w1,i(t) (19)

and allows for the determination of the states

ηi(t) = ηi,0 +

∫ t

0

(ζi + w1,i(τ)) dτ (20)

by integration with respect to time and the IC ηi,0. Hence, the
IDE (9c) can be expressed as

w2,i(t) =

∫ A

0

k̃i(a)e
∫ t
t−a η̇i(s) dsw2,i(t− a) da (21)

resulting in

e−ηi(t)w2,i(t) =

∫ A

0

k̃i(a)e
−ηi(t−a)w2,i(t− a) da. (22)

Note that, by the definition from (11), the states of the internal
dynamics are given by

ψi(t) =
e−ηi(t)w2,i(t)

x∗i (0)
− 1. (23)

Plugging in the results from (22) into (23) yields the proposed
IDE (15c). In a final step, inserting (22) resorted after w2,i(t)
into the solutions of the population systems (8) from Lemma 2
results in (16). �

A simulation illustrating the periodic behavior of the uncon-
trolled system in the sense u = u∗ is shown in Fig. 2 in x-, η-,
and ψ-states.

Before we deal with the control design for the transformed
system, some helpful properties of the IDEs are stated. The
interested reader is referred to [22] for further derivations. Note
that it was proved in [22] that the states ψi of the internal
dynamics are restricted to the sets

Si =
{
ψi ∈ C0([−A, 0]; (−1,∞)) :

P (ψi) = 0 ∧ ψi(0) =
∫ A

0

k̃i(a)ψi(−a) da
}

(24)

where

P (ψi) =

∫ A
0 ψi(−a)

∫ A
a k̃i(s) ds da∫ A

0 ak̃i(a) da
(25)

and that the states ψi of the internal dynamics are globally
exponentially stable in the L∞ norm, which means that there
exist Mi ≥ 1 and σi ≥ 0 such that

ψi(t− a) ≤Mie
−σit||ψi,0(a)||∞ (26)

holds for all t ≥ 0 and ψi,0 ∈ Si and all a ∈ [−A, 0].
Note that in the following, we drop the argument (t) in the

states ηi(t) and ψi(t) and use the notation ψi,t := ψi(t− a) to
denote the “age-history” of ψi at certain t ≥ 0 for improved
readability. Furthermore, we introduce the vector states η :=
[η1, η2] and ψ := [ψ1, ψ2] for a more concise notation.

III. CONTROL DESIGN WITH UNRESTRICTED DILUTION

As the internal dynamics are stable, instead of (15a) and (15b),
for the sake of control design, we first consider the ODE system
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Fig. 2. Periodic behavior of the population densities xi when u = u∗, along with the states of the controllable ODE system—η1 ( ) and η2
( )—and the autonomous but stable IDEs—ψ1 ( ) and ψ2 ( ). The parameter set (107) and ICs (108) used are specified in Section VII.

with ψi ≡ 0

η̇1 = ζ1 − u− λ2e
η2 (27a)

η̇2 = ζ2 − u− 1

λ1
e−η1 . (27b)

Using constraint (5b) linking the steady-state dilution u∗ and
the parameters ζi, namely, u∗ = ζ1 − λ2 = ζ2 − 1

λ1
, with the

functions

φ1(η1) :=
1

λ1
(1− e−η1) ≤ 1

λ1
(28a)

φ2(η2) := λ2(e
η2 − 1) ≥ −λ2 (28b)

we write (27) as

η̇1 = u∗ − u− φ2(η2) (29a)

η̇2 = u∗ − u+ φ1(η1). (29b)

Since φ1 is increasing in the prey concentration η1, the presence
of prey clearly enhances the predator population. In contrast,
sinceφ2 is decreasing in the predator concentrationη2, the preda-
tor has a repressive effect on the prey population. In addition,
dilution u also has a repressive effect—on both populations.
Hence, the dilution and predator work in tandem relative to the
prey population, posing a risk of overharvesting. As we shall
see, this compels a choice of a feedback law that may take
negative dilution values, to compensate for the fact that, when
the prey population is depleted, positive dilution may result in
overharvesting the prey and, consequently, in the extinction of
both populations.

A. Feedback Linearizing Design

The system (27) is feedback linearizable, and before we
produce our preferred design, inspired by the system’s structure,
we briefly explore the feedback linearizing option. In addition,
there are multiple backstepping design options, which we leave
out of consideration. Taking the change of variables

y = η1 − η2 (30)

z = − φ1(η1)− φ2(η2) (31)

which is a global diffeomorphism, and feedback

u(t) = u∗ +
(

λ2e
η2 +

1

λ1
e−η1

)−1(
−k1 (η1 − η2)

+ k2 (φ1(η1) + φ2(η2)) + λ2e
η2φ1(η1)

− 1

λ1
e−η1φ2(η2)

)
(32)

with k1, k2 > 0, we arrive at the closed-loop system

ẏ = z (33a)

ż = − k1y − k2z. (33b)

We abandon this approach because (32) is not only complicated
but the set in the plane (η1, η2) in which the dilution u remains
positive is very complicated.

B. Open-Loop Stability

Before we proceed to feedback stabilization, we perform
open-loop stability analysis. We introduce the functions

Φ1(η1) :=

∫ η1

0

φ1(β)dβ =
1

λ1
(e−η1 − 1 + η1)

= −φ1(η1) + 1

λ1
η1 (34a)

Φ2(η2) :=

∫ η2

0

φ2(β)dβ = λ2(e
η2 − 1− η2)

= φ2(η2)− λ2η2 (34b)

and note that Φ1(0) = Φ2(0) = 0, as well as that, for r �=
0, Φ1(r) > 0 and Φ2(r) > 0, and limr→±∞ Φ1(r) → ∞ and
limr→±∞ Φ2(r) → ∞. We use these functions as Lyapunov
candidates but, before doing so, let us examine (Φ1,Φ2) in
some detail. We note thatΦ2 gives greater weight to the predator
surplus (exponential) than to predator deficit (linear), whereas
the function Φ1 gives a greater weight to the prey deficit (ex-
ponential) than to prey surplus (linear). Hence, both functions
grow only linearly (and not exponentially) when predator deficit
and prey surplus are exhibited, namely, when the prey is highly
advantaged over the predator, namely, in the third quadrant of the
(η1, η2)-plane. This has consequences on performance, making
convergence under feedback harder to achieve when the prey
is initially advantaged (fourth quadrant) than when the predator
is initially advantaged (second quadrant). Such an asymmetry is
probably to be expected since the dilution is an action of only
harvesting the population, and the predator being advantaged
aids the harvesting, whereas the predator being disadvantaged
hampers the harvesting. In the uncontrolled case, u = u∗, the
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resulting system (29) becomes

η̇1 = −φ2(η2) (35a)

η̇2 = φ1(η1) (35b)

and can be written as

(1− e−η1)dη1 = λ1λ2(1− eη2)dη2 (36)

which gives that the quantity

V0(η) = Φ1(η1) + Φ2(η2) (37)

is conserved, namely, V̇0 = 0, and the solutions η(t) are con-
centric orbits in the plane and satisfy

(e−η1(t) − 1 + η1(t)) + λ1λ2(e
η2(t) − 1− η2(t))

= (e−η1(0) − 1 + η1(0)) + λ1λ2(e
η2(0) − 1− η2(0)) . (38)

However, while V0 is a Lyapunov function in the uncontrolled
case, it is not a CLF. We see that from the fact that, for (29),
the derivative of V0 is V̇0 = (φ1(η1) + φ2(η2))(u

∗ − u), which
is zero for all η for which φ1(η1) = φ2(η2), namely, for all the
prey–predator states (η1, η2) on the curve

η2 = ln

(
1 +

e−η1 − 1

λ1λ2

)
(39)

which passes through the origin η = 0. Before proceeding
to control design, let us note that the Jacobian of (35) is[
0 −λ2
1
λ1

0

]
. As the equilibrium harvesting u∗ grows, in ac-

cordance with Remark 1, we know that the prey thrive,
while the predators are diminished, whereas from (5c) and
(6), we know that both λ2, the negated sensitivity of prey
to predators, and 1/λ1, the sensitivity of predators to prey,
decrease as u∗ grows. The eigenvalues of the Jacobian are
±j λ2

λ1
= ±j√(ζ1 − u∗)(ζ2 − u∗). Hence, as the equilibrium di-

lution/harvesting u∗ increases, the mutual sensitivities decrease
and, as a result, the oscillations slow down.

C. CLF Feedback Design

For the purpose of stabilization, instead of the Lyapunov
function (37), we propose the (positive definite and radially
unbounded) CLF candidate

V1(η) = Φ1(η1) + (1 + ε)Φ2(η2)s (40)

with a positive weight (1 + ε) �= 0 to be determined. The
question is, shall we prioritize the predator in this Lyapunov
function, by taking ε > 0, or the prey, by taking ε ∈ (−1, 0)?
The answer to this question is easy, by computing V̇1 = (φ2 +

(1 + ε)φ1)(u
∗ − u) + εφ1φ2 and noting than V̇1 = εφ1φ2 =

−ε(1 + ε)φ22 < 0 whenever φ1 = −(1 + ε)φ2 and ε > 0.
Hence, we take ε > 0 in (40), and along with it, the CLF-based

control law

u = u∗ + β (φ1(η1) + (1 + ε)φ2(η2)) (41)

which is a gradient (“LgV ”) feedback relative to V1 with a

positive gain β, namely, u = u∗ − β(∂V1

∂η [
−1
−1

])T , and much

simpler than the linearizing feedback (32). The feedback (41)

results in the Lyapunov derivative

V̇1(η) = − [φ1 φ2
]
Q

[
φ1
φ2

]
(42)

where

Q =

[
β ε−2β(1+ε)

2
ε−2β(1+ε)

2 β(1 + ε)2

]
(43)

is a positive definite matrix for

ε > 0 (44)

β > β∗(ε) =
ε

4(1 + ε)
(45)

and its smaller eigenvalue in that case is

λmin(Q) =

ε

2

4(1 + ε)β−ε
β(1+(1+ε)2) +

√
β2(1+(1 + ε)2)2 − ε(4(1 + ε)β − ε)

> 0 . (46)

The square root in the denominator is real since its argument
is no smaller than (ε (1+ε)2−1

(1+ε)2+1 )
2 > 0. Furthermore, if we take,

for example, β = ε
2(1+ε) , we get simply λmin(Q) = ε(1+ε)

2 . In

the sequel, the quantity 1
γ◦

= 2λmin(Q)
1+ε will arise in expressions

like (56) and (59), which for this particular choice of β becomes
simply 1

γ◦
= ε.

Hence, when picking ε and β in accordance with conditions
(44) and (45), the control law (41), resulting in the closed loop

η̇1 = −βφ1(η1)− (1 + β(1 + ε))φ2(η2) (47a)

η̇2 = −β(1 + ε)φ2(η2) + (1− β)φ1(η1) (47b)

globally asymptotically stabilizes the origin η = 0 of the ODE
system (29), in which the ψ-dynamics are neglected.

Theorem 1: Under the feedback law (41), the equilibrium
η = 0 of the system (29) is globally asymptotically and lo-
cally exponentially stable, while the control signal u(t) re-
mains bounded though not necessarily positive. Furthermore,
u(t) > 0 for all t ≥ 0 and for all η(0) belonging to a level
set Ω = {η ∈ R

2 : V1(η) ≤ r} for some r > 0, for which Ω

is a subset of D0 = {η ∈ R
2
∣∣∣u∗ + β(φ1(η1) + (1 + ε)φ2(η2))

> 0}.
The choice (44) of ε > 0 arises mathematically, but there is

also intuition behind it. It makes sense to prioritize the predator
η2 in the CLF (40) because both the dilution control and the
predator are harvesters: for the values of (η1, η2) for which the
dilution harvesting (of both populations) is unable to affect V̇1,
the predator’s harvesting (or prey) is already driving V1 toward
zero.

With (27), note that the dilution feedback u(η1, η2) in (42)
is an increasing function of both the prey biomass η1 and the
predator biomass η1. Not favoring either of the two populations
makes sense for a controller whose objective is stabilization of
such a two-species system in which the natural behavior is a
threat to both species.
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IV. STABILITY WITH NONZERO ψ

In the following, we show that the control law (41) based on
the ODE system neglecting the internal dynamics (29) stabilizes
the full ODE-IDE system (15). First, we introduce the mapping
vi : S → R+

vi(ψi,t) = ln

(
1 +

∫ A

0

ḡj(a)ψi(t− a) da

)
(48)

for i, j ∈ {1, 2}, i �= j, and

ḡi(a) =
gi(a)x

∗
j(a)∫ A

0 gi(a)x∗j(a) da
,

∫ A

0

ḡi(a) da = 1. (49)

Then, (15a) and (15b) are rewritten as

η̇1 = u∗ − u− φ2(η2 + v2(ψ2)) (50a)

η̇2 = u∗ − u+ φ1(η1 + v1(ψ1)). (50b)

With the previously defined control law (41), the closed loop is

η̇1 = −β (φ1(η1) + (1 + ε)φ2(η2))− φ2(η2 + v2(ψ2))

(51a)

η̇2 = −β (φ1(η1) + (1 + ε)φ2(η2)) + φ1(η1 + v1(ψ1))
(51b)

ψi(t) =

∫ A

0

k̃i(a)ψi(t− a) da (51c)

which displays the perturbating character of the internal dynam-
ics ψi. For better readability in the following, we denote:

φi := φi(ηi), φ̂i := φi(ηi + vi). (52)

In addition, we need a technical assumption on the birth kernel
for the definition of a Lyapunov functionG (53) as used in [22].

Assumption 1 (Birth kernel [22]): There exist constants
κi > 0 such that

∫ A
0 |k̃i(a)− ziκi

∫ A
a k̃i(s) ds| da < 1 with

zi = (
∫ A
0 ak̃i(a) da)

−1.
Assumption 1 is a mild technical assumption, since it is

satisfied by arbitrary mortality rate μi for every birth kernel
ki that has a finite number of zeros on [0, A]. The role of
Assumption 1 is crucial for the establishment of the function G
used in the CLF. Means of verifying the validity of Assumption 1
and detailed discussions are given in [22].

If Assumption 1 holds, then there exist constants
σi > 0, with i = 1, 2, such that the inequalities

∫ A
0 |k̃i −

ziκi
∫ A
a k̃i(s) ds|eσia da < 1 for i = 1, 2 hold.

Now, to state the main result, we introduce the functionalsGi
defined as

Gi(ψi) :=
maxa∈[0,A] |ψi(−a)|eσi(A−a)

1 + min(0,mina∈[0,A] ψi(−a)) (53)

and recall from [22] that their Dini derivatives (D+) satisfy

D+Gi(ψi,t) ≤ −σiGi(ψi,t) (54)

along solutions ψi,t of the IDE for with sufficiently small
parameters σi > 0. This property follows from Corollary 4.6
and the proof of Lemma 5.1 of [22] with Ci(ψi) =

1
(1+min(0,mina∈[0,A] ψi(−a)))2 and b(s) = s, similar to what is
discussed in [12].

Theorem 2: Let Assumption 1 hold and defineS = S1 × S2.
Consider the closed-loop system (51), i.e., system (15) with the
control law (41), on the state space R

2 × S, which is a subset
of the Banach space R

2 × C0([−A, 0];R2) with the standard
topology. Suppose the parameters ε and β satisfy the conditions
(44) and (45) and λmin(Q) > 0 is the lowest eigenvalue of the
resulting positive definite matrix Q(ε, β) from (46). Denoting
η = [η1, η2]

�, ψ = [ψ1, ψ2]
� and the Lyapunov functional

V (η, ψ) = V1(η) +
γ1
σ1
h(G1(ψ1)) +

γ2
σ2
h(G2(ψ2)) (55)

with V1(η) from (40), the positive weights are chosen as

γ1 >
1

λ2
1

γ◦, γ2 > λ2
2γ◦, γ◦ =

1 + ε

2λmin(Q)
(56)

and the positive definite radially unbounded function h(·) is
defined as

h(p) :=

∫ p

0

1

z
(ez − 1)2 dz. (57)

Then, the following holds.
1) Positive invariance holds for all the level sets of V of the

form

Ωc := {η ∈ R
2, ψ ∈ S | V (η, ψ) ≤ c} (58)

that are within the set

D :=

{
η ∈ R

2, ψ ∈ S
∣∣∣∣∣

η1 ≥ − ln

(
λ1

√
γ1
γ◦

)
, η2 ≤ ln

(
1

λ2

√
γ2
γ◦

)
,

u∗ + β(φ1(η1) + (1 + ε)φ2(η2)) > 0

}
(59)

namely, within the set D where neither the prey deficit
nor the predator surplus are too big but the predator state

is bigger than η2(η1) = ln(1 +
e−η1−1− λ1

λ2

u∗
β(1+ε)

(1+ε)λ1λ2
).

2) The input u(t) remains positive for all time.
3) There exists θ0 ∈ KL such that, for all ICs (η0, ψ0)

within the largest Ωc contained in D, the following esti-
mate holds:

|(η(t), G(t))| ≤ θ0 (|(η(0), G(0)| , t) ∀t ≥ 0 (60)

where G(t) = (G1(ψ1,t), G2(ψ2,t)).
4) The equilibrium η = 0, ψ = 0 is locally exponentially

stable in the norm
√
η21 + η22 + ‖ψ1‖∞ + ‖ψ2‖∞.

To illustrate this complex interconnection of multiple con-
straints of D, Fig. 3 shows level sets of V1 in the η1-η2-plane,
together with the domain D in gray, i.e., the intersection of the
two half planes η1 > −H1, η2 < H2 and the constraint u > 0
for the ODE-system (29). The choice of ε changes the shape
of the level sets, whereas the shape of the boundary u > 0 is
influenced by both β and ε.

While we design the control law as (41) and offer its alter-
native representation as (78), this representation requires the
age-specific measurement of xi(a, t). Since the controller (41)
uses only eη2 and e−η1 , we recall that if measurements are
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Fig. 3. Level sets of V 1 ( ) for two different choices of ε and β,
with bounds H1 and H2 ( ) for η1 and η2. The gray area is the
set D, namely, the set in which η1 > −H1, η2 <H2, and u > 0. The
largest level set of V 1 ( ) is contained within the actual region of
attraction of η = 0, for the caseψ = 0. The left plot indicates the results
with the control parameters ε and β as used in the simulation shown in
Section VII.

available of

yi(t) =

∫ A

0

ci(a)xi(a, t)da , i = 1, 2 (61)

with sensor kernels c1(a) and c2(a), then we can use the fact
that

eηi(t) =
yi(t)

y∗i

1

1 +
∫ A
0 pi(α)ψi(t− α)dα

(62)

where y∗i =
∫ A
0 ci(a)x

∗
i (a)da and pi(a) =

ci(a)x
∗
i(a)

y∗i
, and the

fact that ψi(t) decays exponentially, in accordance with (26), to
approximate eηi(t) as eηi(t) ≈ yi(t)

y∗i
and approximate the control

law (41) as

u = u∗ + β

[
1

λ1

(
1− y∗1

y1(t)

)
− (1 + ε)λ2

(
1− y2(t)

y∗2

)]
.

(63)

It should be noted though that y∗1 and y∗2 in (63) depend on u∗ in
the following manner:

y∗1(u
∗) =

1

ζ2 − u∗

∫ A
0 c1(a)e

− ∫ a
0 (ζ1+μ1(s)) ds da∫ A

0 g2(a)e−
∫ a
0 (ζ1+μ1(s)) ds da

(64)

y∗2(u
∗) = (ζ1 − u∗)

∫ A
0 c2(a)e

− ∫ a
0 (ζ2+μ2(s)) ds da∫ A

0 g1(a)e−
∫ a
0 (ζ2+μ2(s)) ds da

(65)

and require the knowledge of the model functions μi, ki, and gi
and the sensor functions ci. We do not prove a theorem un-
der the controller (63) because neglecting the decaying term∫ A
0 pi(α)ψi(t− α)dα introduces an additional perturbation in

the closed-loop system.
Proof of Theorem 2: The existence and uniqueness of the

solution ψi,t ∈ S and the property

inf
t≥A

ψi(t) ≥ min
t∈[−A,0]

ψi(t) > −1 ∀t ≥ 0. (66)

is provided in [22, Lemma 4.1]. Further, the IC is lower bounded
and given by

ψi,0(a) := ψi(−a) = xi,0(a)

x∗i (a)Π[xi,0]
− 1 > −1 (67)

where xi,0(a), x∗i (a), and Π[xi,0] from (12) are positive on

the domain [0, A]. With the ḡi(a) ≥ 0 and
∫ A
0 ḡi(a) da = 1

by definition (49), the map vi(ψi,t) (48) is well-defined and
continuous. Hence, the ODE subsystem of (51) locally admits a
unique solution.

Furthermore, from [22], more precisely (A.43), we know that

|vi(ψi,t)| ≤ Gi(ψi,t) (68)

where vi : S → R+ is defined in (48), holds.
The derivative of V1(η) can be bounded to

V̇1 = −
[
φ1
φ2

]
Q
[
φ1 φ2

]
+ φ1φ2 − φ1φ̂2

− (1 + ε)φ1φ2 + (1 + ε) φ̂1φ2

≤ − λmin(Q)||φ||2 + [−φ1 (1 + ε)φ2
] [φ̂2 − φ2
φ̂1 − φ1

]

≤ − λmin(Q)||φ||2 + (1 + ε)||φ|| ||φ̂− φ||

≤ − λmin(Q)||φ||2 + (1 + ε)

2ς
||φ||2 + ς

2
||φ̂− φ||2

≤ − λmin(Q)

2
||φ||2 + (1 + ε)

2λmin(Q)
||φ̂− φ||2 (69)

with the positive definite matrix Q from (42) for certain ε
and β, as stated in (44) and (45), and its lowest real, positive
eigenvalue λmin(Q), as well as using the fact that ε > 0 and
Young’s inequality with ς = (1 + ε)λmin(Q)−1. Inserting the
definitions of φi into φ̂i − φi, we get

φ̂1 − φ1 =

(
φ1 − 1

λ1

)
, (70a)

φ̂2 − φ2 = (φ2 + λ2)(e
v2 − 1) . (70b)

Substituting these expressions into the inequality (69), we use
the resulting V̇1 together with (57) and (68) to compute the Dini
derivative of V (η, ψ) defined in (55) as

D+V

≤ −λmin(Q)

2
||φ||2 + 1 + ε

2λmin(Q)
||φ̂− φ||2

+
γ1
σ1
D+h(G1) +

γ2
σ2
D+h(G2)

≤ −λmin(Q)

2
||φ||2 + 1 + ε

2λmin(Q)(
(λ2 + φ2)

2 (ev2 − 1)2 +

(
1

λ1
− φ1

)2 (
e−v1 − 1

)2)

− γ1
(
eG1 − 1

)2 − γ2
(
eG2 − 1

)2
≤ −λmin(Q)

2
||φ||2

+

[
1 + ε

2λmin(Q)

(
1

λ1
− φ1

)2

− γ1

] (
eG1 − 1

)2
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+

[
1 + ε

2λmin(Q)
(λ2 + φ2)

2 − γ2

] (
eG2 − 1

)2
. (71)

Consider for a moment the expressions ( 1
λ1

− φ1)
2 and (λ2 +

φ2)
2 above. Note that they cannot be bounded, respectively, in

direct proportion to Φ1 and Φ2, since

lim
η1→−∞

1
λ1

+Φ1(η1)
1
λ1

− φ1(η1)
= lim
η2→+∞

λ2 +Φ2(η2)

λ2 + φ2(η2)
= 1 (72)

but only quadratically in Φ1 and Φ2. This means that one cannot
attain a global result by replacing V1 with ln(1 + V1) in (55).
So, for (71) to be negative definite at least in a region of the state
space around the origin, we restrict the states η

η1 ≥ − ln

(
λ1

√
2γ1λmin(Q)

1 + ε

)
=: −H1 (73a)

η2 ≤ ln

(
1

λ2

√
2γ2λmin(Q)

1 + ε

)
=: H2. (73b)

For H1 and H2 to be positive, choose

γ1 >
1

λ2
1

1 + ε

2λmin(Q)
(74a)

γ2 > λ2
2

1 + ε

2λmin(Q)
. (74b)

After imposing (74), (71) becomes

D+V ≤ − λmin(Q)

2
||φ||2 − γ1

2

(
eG1 − 1

)2 − γ2
2

(
eG2 − 1

)2
∀ η1 > −H1, η2 < H2. (75)

Since V is radially unbounded, all level sets Ωc := {η ∈
R

2, ψ ∈ S|V (η, ψ) ≤ c} are compact. Hence, there exists a
level set c > 0 such that Ωc ⊂ D, where D is defined by (59).
Let us now rewrite (40), (55), and (75) as

D+V (η,G)

= D+

[
Φ1(η1) + (1 + ε)Φ2(η2),+

γ1
σ1
h(G1) +

γ2
σ2
h(G2)

]

≤ −λmin(Q)

2
||φ(η)||2 − γ1

2

(
eG1 − 1

)2 − γ2
2

(
eG2 − 1

)2
=: −W (η,G), G = (G1, G2) (76)

for all η1 > −H1 and η2 < H2. Since V1 and W are positive
definite in (η,G), there exists θ0 ∈ KL such that, for all ICs
(η0, G0) within the largest Ωc contained in D, the estimate (60)
holds. Finally, since (40) with (34) is locally quadratic in η, and
since for all r ∈ (0, 1) and for all ψi ∈ S with ‖ψi‖∞ ≤ r, it
holds, using (53), that

‖ψi‖∞ ≤ Gi(ψi) ≤ eσiA

1− r
‖ψi‖∞ (77)

the local asymptotic stability of η = 0 and ψ = 0 in the norm√
η21 + η22 + ‖ψ1‖∞ + ‖ψ2‖∞ follows. The exponential nature

of stability follows from a careful inspection of (76), along
with the definitions of V, φ1, φ2, G1, and G2. This completes
the proof of Theorem 2. �

Corollary 1: There exists θ ∈ KL such that, under the
restrictions on the ICs in Theorem 2 given by (55), (58), and (59)
but understood in the sense of the transformations (x1, x2) �→
(η1, η2, ψ1, ψ2) defined by (11) applied to the ICs xi(·, 0) ∈ Fi,
the control law (41), given in the biomass concentration variables
(x1, x2) as

u = u∗ + β

[
1

λ2

(
1−

∫ A
0 ak1(a)x

∗
1(a) da∫ A

0 π0,1(a)x1(a, t) da

)

− λ1

(
1−

∫ A
0 π0,2(a)x2(a, t) da∫ A
0 ak2(a)x∗2(a) da

)]
(78)

guarantees the following regional asymptotic stability estimate:

max
a∈[0,A]

∣∣∣∣ln xi(a, t)x∗i (a)

∣∣∣∣ ≤ θ

(
max
a∈[0,A]

∣∣∣∣ln xi(a, 0)x∗i (a)

∣∣∣∣ , t
)

∀t ≥ 0 .

(79)

Proof: It was established in the inequalities (5.24) and (5.27)
in [22] that there exist θ̄, θ ∈ K such that

max
a∈[0,A]

∣∣∣∣ln xi(a, t)x∗i (a)

∣∣∣∣ ≤ θ̄(|(η(t), G(t))|) ∀t ≥ 0 (80)

|(η(0), G(0))| ≤ θ

(
max
a∈[0,A]

∣∣∣∣ln xi(a, 0)x∗i (a)

∣∣∣∣
)
. (81)

Combining these two inequalities with (60), the estimate (79)
follows immediately, with θ(r, t) = θ̄(θ0(θ(r), t)). �

V. GLOBAL STABILIZATION WITH POSITIVE DILUTION

Up to this section, we focused on the global stabilization of the
reduced model (29), namely, for all ICs η(0) ∈ R

2, but without
ensuring the that dilution u(t) remains positive for all ICs.
Dilution values, i.e., harvesting rates, that take negative values
amount to introducing (externally “farmed”) populations, which
is unrealistic, especially when such an injection of populations
needs to be in proportion to the current density of both predator
and prey at each respective age.

In this section, we return to the reduced model (29), with
φ1 and φ2 defined in (28), and define a globally stabilizing
feedback law with positive u(t).

Theorem 3: Under the feedback law

u = u∗ + εφ2(η2) + β
ϕ(η)√

δ2 + (min(0, ϕ(η))2
(82)

where

ϕ(η) = φ1(η1) + (1 + ε)φ2(η2) (83)

δ > 0 is arbitrary, and, for a given dilution setpoint u∗ > 0, the
feedback gains ε > 0 and β ≥ 0 are selected so that

ελ2 + β < u∗ (84)

the origin η = 0 of the system (29) is globally asymptotically
stable, locally exponentially stable, and, furthermore, the dilu-
tion input u(t) defined in (82) remains positive for all t ≥ 0.

Proof: First, we observe from the fact that the minimum of
ϕ(η)√

δ2+(min(0,ϕ(η))2
is −1, the minimum of φ2 in (28) is −λ2,

the gain condition (84), and the definition of the feedback u(η)
in (82) that u remains positive. To prove global asymptotic
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stabilization, we take the Lyapunov function V1 defined in (40)
with the help of (34), and obtain

V̇1(η)

= φ1(η1)

(
− (1 + ε)φ2(η2)− βϕ(η)√

δ2 + (ϕ−)2

)

+ (1 + ε)φ2(η2)

(
φ1(η1)− εφ2(η2)− βϕ(η)√

δ2 + (ϕ−)2

)

= − ε(1 + ε)φ22(η2)

− (φ1(η1) + (1 + ε)φ2(η2))
βϕ(η)√
δ2 + (ϕ−)2

= − ε(1 + ε)φ22(η2)−
βϕ2(η)√
δ2 + (ϕ−)2

(85)

where we have denoted ϕ− = min(0, ϕ). When β > 0, (85) is
negative definite, and consequently, 0 ∈ R

2 is globally asymp-
totically stable for the closed-loop system (29) with (82). When
β = 0, the set V̇1 = 0 is the set η2, and the only solution that
remains in this set, for the closed-loop system (29) and (82), is the
solution with η1(t) ≡ 0. By the Barbashin–Krasovskii theorem,
0 ∈ R

2 is globally asymptotically stable. The Jacobian matrix
of the closed-loop system (29) with (82) at 0 ∈ R

2[
− k

λ1
−(1 + ε)λ2(1 + k)

1
λ1

(1− k) −ελ2 − k(1 + ε)λ2

]
(86)

where k = β
δ , is a Hurwitz matrix for both β > 0 and β = 0.

Therefore, 0 ∈ R
2 is also locally exponentially stable for the

closed-loop system (29) with (82). �
We briefly examine the local exponential performance of

the closed-loop system. The characteristic polynomial of the
Jacobian (86) is given by

p(s) = s2 +

(
k

(
1

λ1
+ λ2

)
+ ελ2 (1 + k)

)
s

+ (1 + ε (1 + k))
λ2

λ1
. (87)

By examining the discriminant condition of this polynomial(
k

(
1

λ1
+ λ2

)
+ ελ2 (1 + k)

)2

≥ 4 (1 + ε (1 + k))
λ2

λ1

(88)
it is evident that the roots of the polynomial are not only negative
but also real for sufficiently large k > 0 (i.e., for β > 0 and
sufficiently small δ > 0) due to the fact that the left-hand side
of (88) is quadratic in k and the right-hand side is linear in
k. In conclusion, the linearization of the closed-loop system
(29) with (82) has a damped response for a small enough δ.
That means, in turn, the oscillations of the predator–prey open-
loop motion are completely eliminated, at least locally, for a
small enough δ, for any ε chosen to satisfy the dilution positivity
condition (84).

VI. REGIONAL STABILIZATION WITH POSITIVE DILUTION

Now we turn our attention to the study of the stabilizing
properties of the feedback law (82) in the presence of the IDE
ψ-perturbations (51c). From (50a), (50b), and (52), one obtains
the perturbed model

η̇1 = u∗ − u− φ2 + φ̃2 (89a)

η̇2 = u∗ − u+ φ1 − φ̃1 (89b)

where we have denoted φ̃i = φi − φ̂i and have suppressed the
arguments η1 and η2 for notational brevity. With (40), (89a),
(89b), and (82), we get

V̇1 = − ε(1 + ε)φ22 −
βϕ2√

δ2 + (ϕ−)2

+ φ1φ̃2 − (1 + ε)φ2φ̃1

= − ε(1 + ε)φ22 −
βϕ2√

δ2 + (ϕ−)2

− (1 + ε)φ2

(
φ̃1 + φ̃2

)
+ ϕφ̃2 . (90)

From (71), we recall that
γ1
σ1
D+h(G1) +

γ2
σ2
D+h(G2)

≤ −γ1
(
eG1 − 1

)2 − γ2
(
eG2 − 1

)2
. (91)

Now recall the Lyapunov functional (55), for which we obtain

D+V ≤ V̇1 +
γ1
σ1
D+h(G1) +

γ2
σ2
D+h(G2)

≤ − ε

2
(1 + ε)φ22 +

1 + ε

ε

(
φ̃21 + φ̃22

)
− βϕ2√

δ2 + (ϕ−)2
+ ϕφ̃2

− γ1
(
eG1 − 1

)2 − γ2
(
eG2 − 1

)2
. (92)

In addition, from (68) and (70)∣∣∣φ̃1∣∣∣ ≤ ∣∣∣∣ 1λ1
− φ1

∣∣∣∣ ∣∣eG1 − 1
∣∣ (93)

∣∣∣φ̃2∣∣∣ ≤ |λ2 + φ2|
∣∣eG2 − 1

∣∣ . (94)

Let us note next that

− βϕ2√
δ2 + (ϕ−)2

+ ϕφ̃2 ≤ − β

2

ϕ2√
δ2 + (ϕ−)2

+
�

2
φ̃22

+
ϕ2

2

⎛
⎝− β√

δ2 + (ϕ−)2
+�

⎞
⎠
(95)

where we take β > 0 (unlike in Theorem 3 where β = 0 is also
allowed) and choose � such that

0 < � < β/δ (96)
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in order to have

− βϕ2√
δ2 + (ϕ−)2

+ ϕφ̃2 ≤ − β

2

ϕ2√
δ2 + (ϕ−)2

+
�

2
φ̃22

whenever ϕ(η) ≥ −
√
β2

�2
− δ2 . (97)

From (92)–(95), we get

D+V

≤ − ε

2(1 + ε)
φ22 +

1 + ε

ε

(
1

λ1
− φ1

)2 (
eG1 − 1

)2
+

1 + ε

ε
(λ2 + φ2)

2 (eG2 − 1
)2

− β

2

ϕ2√
δ2 + (ϕ−)2

+
ϕ2

2

⎛
⎝− β√

δ2 + (ϕ−)2
+�

⎞
⎠

+
1

2�
(λ2 + φ2)

2 (eG2 − 1
)2

− γ1
(
eG1 − 1

)2 − γ2
(
eG2 − 1

)2
= − ε

2(1 + ε)
φ22 −

β

2

ϕ2√
δ2 + (ϕ−)2

+

[
1 + ε

ε

(
1

λ1
− φ1

)2

− γ1

] (
eG1 − 1

)2
+

[
1 + ε

ε
(λ2 + φ2)

2 +
1

2�
− γ2

] (
eG2 − 1

)2

+
ϕ2

2

⎛
⎝− β√

δ2 + (ϕ−)2
+�

⎞
⎠ . (98)

In the set

η1 ≥ − ln

(
λ1

√
ε

1 + ε

γ1
2

)
=: −H1 (99a)

η2 ≤ ln

(
1

λ2

√
ε

1 + ε

γ2 − 1/�

2

)
=: H2 (99b)

φ1(η1) + (1 + ε)φ2(η2) ≥ −
√
β2

�2
− δ2 (100)

where we note that η1 = η2 = G1 = G2 = 0 is strictly inside,
the following holds:

D+V ≤ − ε

2(1 + ε)
φ22 −

β

2

ϕ2√
δ2 + (ϕ−)2

− γ1
2

(
eG1 − 1

)2 − γ2
2

(
eG2 − 1

)2
(101)

provided the analysis constants �, γ1, and γ2 are chosen such
that

0 < � <
β

δ
(102)

γ1 >
2

λ2
1

1 + ε

ε
> 0 (103)

γ2 > 2λ2
2

1 + ε

ε
+

1

�
> 2λ2

2

1 + ε

ε
+
δ

β
> 0. (104)

Since (101) is negative definite within the sets (102)–(104), then
the largest level set of V is an estimate of the region of attraction
of η = 0 and ψ ≡ 0.

The set (100) is difficult to imagine, even with the defi-
nitions (28). However, in the “exponentiated” variables, q1 =
eη1 − 1 and q2 = eη2 − 1, this set is written as

q2 ≥ H(q1) with

H(q1) :=
1

(1 + ε)λ1λ2

[
1

1 + q1
−
(
1 + λ1

√
β2

�2
− δ2

)]
(105)

where q2 = H(q1) is a hyperbola, and the origin q1 = q2 = 0
(i.e., η1 = η2 = 0) is within the set (105).

Theorem 4: Let Assumption 1 hold. Consider the closed-
loop system (89), i.e., system (15) with the control law (82),
on the state space R

2 × S. Let δ > 0 and the parameters
ε, β > 0 satisfy the conditions (84). Define V (η, ψ) by means
of (55) for γ1 and γ2 that satisfy (103) and (104) for some
� ∈ (0, βδ ). Then, all the conclusions of Theorem 2 hold withD
replaced by

D :=

{
(η, ψ) ∈ R

2 × S
∣∣∣∣∣

η1 ≥ −H1 , η2 ≤ H2

φ1(η1) + (1 + ε)φ2(η2) > −
√
β2

�2
− δ2

}
(106)

where H1 and H2 are defined by (99).
By noting that the constants H1 and H2 in (99) increase

with γ1 and γ2, one is tempted to hope that a compact esti-
mate of the region of attraction of (η1, η2, G1, G2) = 0 may
be arbitrarily large. However, by examining the dependence of
the Lyapunov function V in (55) on γ1 and γ2, as well as the
dependence on (η1, η2) of the Lyapunov function V1 defined
by (34) and (40), one realizes that it is not only impossible to
make an estimate of the region of attraction arbitrarily large
by increasing γ1 and γ2, but such an increase, while expanding
the estimate in (η1, η2), shrinks the estimate in (G1, G2). In
other words, there is a tradeoff between the allowed size of
the initial state η and the allowed size of the initial profile of
the “internal age-structured perturbation” ψ. All this is not a
consequence of a conservative analysis that we conduct. It is a
consequence of the engineering and physical requirement that
dilution is positive, which dictates the use of saturated feedback
and, ultimately, results in the lack of global robustness to the
ψ-perturbation.
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Fig. 4. Control A with initially underpopulated predator and overpopulated prey: Population densities xi from system (1) with steady-state x∗i(a)
( ), and transformed state variables η1 ( ) and η2 ( ) from representation (15) under control law (41), and with parameter set (107), ICs
(108), ε = 0.2, and β = 0.6.

VII. SIMULATIONS

In this section, we present a numerical example of the inter-
acting population system and show simulations of both control
laws for different ICs.

A. Model Parameters and Equilibria

The age-dependent kernels used for simulation are

μi(a) = μ̄ie
a (107a)

ki(a) = k̄ie
−a (107b)

gi(a) = ḡi
(
a− a2

)
(107c)

which are biologically inspired and have led to realistic sim-
ulation results when studying the behavior of one species in
a bioreactor [25]. Mortality rates μi(a) increase exponentially
with age, whereas fertility rates ki(a) decrease exponentially
with age. The maximum interaction is achieved in the middle
of the age interval with maximum age A = 1. More precisely,
we choose both species to exhibit the same behavior, namely,
μ̄i = 0.5, k̄i = 3, and ḡi = 0.4. With these species’ characteris-
tics, we obtain the parameters ζ1 = ζ2 = 1.17 from Lemma 1.
A species without external inputs adding population can only
survive if ζi > 0. We choose u∗ = 0.15, which corresponds
approximately to ζ1 − 1, and obtain λ1 = 0.98 and λ2 = 1.02
according to constraint (5b). From that, the initial values of
the steady states follow to x∗1(0) = 33.81 and x∗2(0) = 35.19
by (6).

We have the freedom to choose xi,0(a), and from that, ηi(0),
ψi,0(a) follow by transformation (11). Two interesting scenarios
are: 1) an initially overpopulated prey/underpopulated predator
case (η0 in fourth quadrant), and 2) an initially underpopu-
lated prey/overpopulated predator case (η0 in second quadrant).
Recall that ηi > 0 means xi > x∗i , and ηi < 0 means xi < x∗i .
The ICs chosen in the following simulations are:

x0,FQ =

[
x∗1(a)e

1+2a

x∗2(a)e
−1−2a

]
(108)

x0,SQ =

[
x∗1(a)e

−1−2a

x∗2(a)e
1+2a

]
(109)

resulting in η0,FQ = [1.57,−1.41] and η0,SQ = [−1.41, 1.57].

B. Results

We recall from Fig. 2 that the open-loop system is marginally
stable. Simulations of the autonomous ψ-dynamics are omitted
for the controlled system as they do not change with respect to
the uncontrolled system simulations.

We refer to the initial control law (41) from Sections III and
IV, which does not ensure positive dilution u(t) as control A.
The parameters of said control (41) are chosen to be ε = 0.2
and β = 0.6. Figs. 4 and 6 show simulations of system (1) with
control A (41) for the ICs (108) and (109), respectively.

We refer to the enhanced, restrained control law (82) from
Sections V and VI, which ensures positive dilution u(t) as
control B. The parameters of said control (82) are chosen to
be δ = 0.2, β = 0.13, and ε = 0.01 such that constraint (84) is
met. Figs. 5 and 7 show simulations of system (1) with control
B (82), for the ICs (108) and (109), respectively.

C. Discussion

Both proposed controllers achieve convergence to the desired
steady states x∗i . While the dilution input u stays positive at all
times with both proposed control laws for IC (108) where the
predator is initially underpopulated (cf., Figs. 4 and 5), differ-
ences can be observed when the predator is initially advantaged
(cf., Figs. 6 and 7).

1) Initially Underpopulated Predator: Control A and con-
trol B take nearly identical values, which are positive at all
times—harvesting both species is favorable to diminish prey
density and increase predator density: the dilution and predator
work in tandem relative to the prey population. The steady state
is reached after around 8 h.

2) Initially Overpopulated Predator: In this case, the en-
hancement of control B with respect to control A is pointed out:
Control A takes negative values when the predator is initially
overpopulated (see Fig. 6), whereas control B remains positive
at all times (see Fig. 7). Control A taking negative values cor-
responds to adding population, to compensate for the fact that,
when the prey population is depleted, positive dilution may result
in overharvesting the prey and, consequently, in the extinction
of both populations. In this case, control B waits until the prey
density increases by its natural course before taking control
action. The steady state is reached after 15 h (whereas employing
the unrealistic positive dilution would drive the system to its
steady state more than twice as fast).
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Fig. 5. Control B with initially underpopulated predator and overpopulated prey: Population densities xi from system (1) with steady-state x∗i(a)
( ), and transformed state variables η1 ( ) and η2 ( ) from representation (15) under control law (82), and with parameter set (107), ICs
(108), δ = 0.2, β = 0.13, and ε = 0.01.

Fig. 6. Control A with initially underpopulated prey and overpopulated predator: Population densities xi from system (1) with steady-state x∗i(a)
( ), and transformed state variables η1 ( ) and η2 ( ) from representation (15) under control law (41), and with parameter set (107), ICs
(109), ε = 0.2, and β = 0.6.

Fig. 7. Control B with initially underpopulated prey and overpopulated predator: Population densities xi from system (1) with steady-state x∗i(a)
( ), and transformed state variables η1 ( ) and η2 ( ) from representation (15) under control law (82), and with parameter set (107), ICs
(109), δ = 0.2, β = 0.13, and ε = 0.01.

VIII. CONCLUSION

The interest in extending the foundational design and analysis
results in [22] goes in many directions. In this article, we
extended the single population model to two interacting pop-
ulations in a predator–prey setup. We developed two control de-
signs, a modified Volterra-like CLF that employs possibly neg-
ative harvesting, and a more sophisticated, restrained controller
with positive harvesting. Both controllers stabilize the ODE
system globally asymptotically and locally exponentially. For
the ODE-IDE system, the globality is lost with both controllers,
but regional stability holds. Such generalizations of the chemo-
stat problem into multipopulation systems, of which epidemiol-
ogy is one possible application, open exciting possibilities for

future research directions, such as investigating predator–
predator scenarios or more than two interacting populations.
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Miroslav Krstić (Fellow, IEEE) received his
BSEE from the University of Belgrade, Bel-
grade, Serbia, in 1989, and the Ph.D. degree in
ECE from UC Santa Barbara, Santa Barbara,
CA, USA, in 1994.

He is currently a Distinguished Professor of
mechanical and aerospace engineering, holds
the Alspach Endowed Chair, and is the Found-
ing Director of the Center for Control Systems
and Dynamics with UC San Diego, San Diego,
CA, USA, where he is also a Senior Associate

Vice Chancellor for Research. He has coauthored 19 books on adaptive,
nonlinear, and stochastic control, extremum seeking, control of PDE
systems, including turbulent flows, and control of delay systems.
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