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ABSTRACT

This paper introduces novel dynamic event-triggered control (ETC) mechanisms for 2 x 2 linear
hyperbolic PDEs in three configurations: continuous-time event-triggered control (CETC), periodic
event-triggered control (PETC), and self-triggered control (STC). These mechanisms ensure global
exponential stability (GES) under ETC using PDE backstepping, with stability estimates provided in
the spatial I norm of the states. The proposed CETC and PETC designs are observer-based and
require continuous boundary measurements collocated with the actuation. In contrast, the STC design
requires full-state measurements; however, unlike CETC and PETC, it does not require continuous
measurements for the triggering mechanism—only measurements taken at event times. In the CETC
design, a lower bound on the time between two consecutive events is enforced, and a dynamic variable
with appropriately designed switching dynamics is introduced. By employing a novel Lyapunov
functional, GES of the closed-loop system is established under zero-order hold implementation of
the backstepping control between events. Events are triggered when the dynamic variable crosses
zero from the positive side, after which it is immediately reset to an appropriate nonnegative value.
Detecting events, therefore, necessitates continuous monitoring of this dynamic variable. To address
this limitation, PETC and STC strategies are proposed. The PETC design identifies a suitable triggering
condition that requires only periodic checks and derives an upper bound on the allowable sampling
period. This PETC approach preserves the GES guaranteed by CETC without requiring continuous
monitoring of a triggering condition, although it still relies on continuous measurements. Unlike CETC
and PETC, STC requires neither continuous measurements nor monitoring of a triggering condition.
Instead, at each event, STC computes the time to the next event — beyond a suitably enforced minimal
dwell-time — using only measurements taken at events. Despite relying solely on event-triggered
measurements, STC is capable of guaranteeing GES of the closed-loop system. The well-posedness
of the closed-loop systems under all three strategies is established. A simulation study is provided to
illustrate the theoretical results.

© 2025 Published by Elsevier Ltd.

1. Introduction

1.1. State of the art

in ETC of PDEs: static event-triggering (Baudouin, Marx, & Tar-
bouriech, 2019; Diagne & Karafyllis, 2021; Espitia, Girard, Marc-
hand, & Prieur, 2016; Espitia, Karafyllis, & Krstic, 2021; Kang,
Baudouin, & Fridman, 2021; Koga, Demir, & Krstic, 2023; Koudo-

Event-triggered control (ETC) of PDEs has gained traction due
to the rise of networked control systems, which require efficient
use of resources for communication, computation, and actua-
tion. Two classes of event-triggering mechanisms are identified
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hode, Baudouin, & Tarbouriech, 2022b; Koudohode, Espitia, &
Krstic, 2024; Rathnayake & Diagne, 2022; Selivanov & Fridman,
2016) and dynamic event-triggering (Demir, Koga, & Krstic, 2024;
Espitia, 2020; Espitia, Auriol, Yu, & Krstic, 2022a, 2022b; Es-
pitia, Yu, & Krstic, 2020; Kang, Fridman, Zhang, & Liu, 2023;
Katz, Fridman, & Selivanov, 2021; Koudohode, Baudouin, & Tar-
bouriech, 2022a; Lhachemi, 2024; Rathnayake & Diagne, 2024a;
Rathnayake, Diagne, Cortés, & Krstic, 2025; Rathnayake, Diagne,
Espitia, & Karafyllis, 2022; Rathnayake, Diagne, & Karafyllis, 2022;
Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023; Zhang, Rath-
nayake, Diagne, & Krstic, 2025; Zhang & Yu, 2024). In static
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event-triggering, events are triggered based on a static rule, typ-
ically requiring full-state measurements, with a few exceptions,
such as Espitia et al. (2016), Selivanov and Fridman (2016), where
the designs can operate with outputs, though not with state
estimates derived from observers. In contrast, dynamic event-
triggering utilizes a dynamic variable that has user-defined dy-
namics. This method can often be used with either full-state
measurements or state estimates derived from observers. The
greater flexibility offered by dynamic event-triggering arises from
the auxiliary dynamics at the designer’s disposal. Regarding the
underlying controller, the most common approach is to imple-
ment a pre-designed continuous-time controller in a zero-order
hold manner between control updates, a strategy known as con-
trol by emulation. PDE backstepping (Krstic & Smyshlyaev, 2008)
and modal decomposition technique (Triggiani, 1980) are among
the widely emulated continuous-time control approaches in PDE
ETC. A key concern in ETC is avoiding Zeno behavior—the oc-
currence of an infinite number of control updates in a finite
time interval, which leads to infeasible designs. A common way
to ensure Zeno-freeness is to demonstrate or enforce a positive
and uniform lower bound on the time between two consecutive
events, referred to as the minimal dwell-time (MDT).

Previous studies on ETC of parabolic PDEs include works such
as Demir, Koga, and Krstic (2024), Espitia et al. (2021), Kang
et al. (2023), Katz et al. (2021), Koga et al. (2023), Koudohode
et al. (2024), Lhachemi (2024), Rathnayake and Diagne (2022,
2024a), Rathnayake, Diagne, Espitia, and Karafyllis (2022), Rath-
nayake, Diagne, and Karafyllis (2022), Wang and Krstic (2023).
Full-state feedback static event-triggering mechanisms for
reaction-diffusion (RD) PDEs using PDE backstepping are pro-
posed in Espitia et al. (2021), Koudohode et al. (2024), while
dynamic event-triggering mechanisms are found in Rathnayake,
Diagne, Espitia, and Karafyllis (2022), Rathnayake, Diagne, and
Karafyllis (2022), Wang and Krstic (2023), with Wang and Krstic
(2023) featuring a full-state feedback adaptive design and Rath-
nayake, Diagne, Espitia, and Karafyllis (2022), Rathnayake, Di-
agne, and Karafyllis (2022) being observer-based. Observer-based
modal decomposition methods for dynamic ETC of RD PDEs are
detailed in Katz et al. (2021), Lhachemi (2024). For parabolic PDEs
with moving boundaries, static event-triggering using PDE back-
stepping is discussed in Koga et al. (2023), Rathnayake and Di-
agne (2022), requiring full-state measurements. Dynamic event-
triggering in the same context is presented in Demir, Koga,
and Krstic (2024), Rathnayake and Diagne (2024a), with Demir,
Koga, and Krstic (2024) proposing a full-state feedback design
and Rathnayake and Diagne (2024a) an observer-based design.
In Kang et al. (2023), the authors introduce a full-state feedback
dynamic ETC method for nonlinear RD PDEs.

Previous works on ETC of hyperbolic PDEs include Baudouin
et al. (2019), Diagne and Karafyllis (2021), Espitia (2020), Espitia
et al. (2022a, 2022b, 2016, 2020), Koudohode et al. (2022b),
Wang and Krstic (2021, 2022a, 2022b, 2022c), Zhang and Yu
(2024). Static event-triggering is used in Baudouin et al. (2019),
Diagne and Karafyllis (2021), Espitia et al. (2016), Koudohode
et al. (2022b), addressing linear hyperbolic systems (Espitia et al.,
2016), damped wave equations (Baudouin et al., 2019; Koudo-
hode et al, 2022b), and nonlinear hyperbolic PDEs in manu-
facturing (Diagne & Karafyllis, 2021). Output feedback is used
in Espitia et al. (2016), while full-state feedback is required in the
others. Dynamic triggering, employed in Espitia (2020), Espitia
et al. (2022a, 2022b, 2020), Wang and Krstic (2021, 2022a, 2022b,
2022c), Zhang and Yu (2024), focuses on 2 x 2 linear hyperbolic
PDEs (Espitia, 2020; Wang & Krstic, 2021, 2022a, 2022b, 2022c)
and 4 x 4 systems (Espitia et al., 2022a, 2022b; Zhang & Yu,
2024). All use PDE backstepping, with full-state feedback in Es-
pitia et al. (2020), Wang and Krstic (2022b), Zhang and Yu (2024)
and observer-based feedback in the others.
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One key limitation of the discussed ETC approaches is that
they require continuous monitoring of conditions to detect events.
Therefore, these mechanisms are referred to as continuous-time
ETC (CETC) methods. As continuous monitoring on digital com-
puters is impractical, two alternative methods have emerged: pe-
riodic event-triggered control (PETC), which periodically checks
conditions (Demir, Diagne, & Krstic, 2024; Rathnayake & Diagne,
2023, 2024b; Rathnayake et al., 2025; Selivanov & Fridman, 2016;
Somathilake, Rathnayake, & Diagne, 2024; Wakaiki & Sano, 2020;
Zhang et al., 2025), and self-triggered control (STC), which pre-
dicts the next event time at the current event based on system
states and dynamics (Rathnayake & Diagne, 2024b; Rathnayake
et al., 2025; Somathilake et al., 2024; Wakaiki & Sano, 2019;
Zhang et al., 2025). Works such as Selivanov and Fridman (2016),
Wakaiki and Sano (2020) use periodic static event-triggering with
full-state measurements for semilinear diffusion PDEs and linear
infinite-dimensional systems. The full-state feedback STC method
from Wakaiki and Sano (2019) targets linear infinite-dimensional
systems. Dynamic periodic event-triggering and self-triggering
with PDE backstepping are examined in Demir, Diagne, and
Krstic (2024), Rathnayake and Diagne (2023, 2024b), Rathnayake
et al. (2025), Somathilake et al. (2024), Zhang et al. (2025).
These include observer-based PETC and STC approaches for RD
PDEs (Rathnayake & Diagne, 2024b) and 2 x 2 linear hyper-
bolic PDEs (Somathilake et al., 2024), full-state feedback and
observer-based PETC approaches for parabolic PDEs with moving
boundaries (Demir, Diagne, & Krstic, 2024; Rathnayake & Diagne,
2023), and full-state feedback PETC and STC using performance
barriers for sparser event-triggering in RD PDEs (Rathnayake
et al, 2025) and 2 x 2 linear hyperbolic PDEs (Zhang et al., 2025).

1.2. Contributions

In this paper, we propose novel dynamic event-triggering
mechanisms for 2 x 2 linear hyperbolic PDEs with PDE back-
stepping in three configurations: CETC, PETC, and STC. These
mechanisms achieve global exponential stability (GES) under event-
triggered PDE backstepping control—an outcome that, to the
best of our knowledge, has not been previously realized using
dynamic event-triggering. Previous works, such as Demir, Diagne,
and Krstic (2024), Demir, Koga, and Krstic (2024), Espitia (2020),
Espitia et al. (2022a, 2022b, 2020), Rathnayake and Diagne (2023,
2024a, 2024b), Rathnayake et al. (2025), Rathnayake, Diagne,
Espitia, and Karafyllis (2022), Rathnayake, Diagne, and Karafyllis
(2022), Somathilake et al. (2024), Wang and Krstic (2021, 2022a,
2022b, 2022c, 2023), Zhang et al. (2025), Zhang and Yu (2024),
that have employed dynamic event-triggering for PDE backstep-
ping, have only established (global) exponential convergence to
equilibrium.! In these works, demonstrating the existence of
an MDT to rule out Zeno behavior while guaranteeing closed-
loop system exponential stability leads to conflicting conditions,
allowing only the establishment of exponential convergence. In
addition to the GES guaranteed by our proposed designs, the
novel STC framework further advances the state of the art by
requiring only event-triggered measurements for the triggering
mechanism—a feature not yet achieved by either static (Espitia
etal, 2021; Koga et al., 2023; Koudohode et al., 2024; Rathnayake
& Diagne, 2022) or dynamic event-triggering (Demir, Diagne, &
Krstic, 2024; Demir, Koga, & Krstic, 2024; Espitia, 2020; Espitia
et al.,, 2022a, 2022b, 2020; Rathnayake & Diagne, 2023, 2024a,
2024b; Rathnayake et al., 2025; Rathnayake, Diagne, Espitia, &

1 Despite the claims of (G)ES in Demir, Koga, and Krstic (2024), Espitia
(2020), Zhang and Yu (2024), and Theorem 3 of Espitia et al. (2020), these only
guarantee (global) exponential convergence to the equilibrium.
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Table 1
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Position of the current work within the state of the art in dynamic event-triggering for PDE backstepping control.

PDE type Dynamic ETC with PDE backstepping (G)ES PETC STC Event-triggered
measurements

Demir, Koga, and Krstic (2024), Rathnayake and Diagne (2024a), X X X X

Parabolic Rathnayake, Diagne, Espitia, and Karafyllis (2022), Rathnayake,
Diagne, and Karafyllis (2022), Wang and Krstic (2023)
Demir, Diagne, and Krstic (2024), Rathnayake and Diagne (2023) X v X X
Rathnayake and Diagne (2024b), Rathnayake et al. (2025) X v v X
Espitia (2020), Espitia et al. (2022a, 2022b, 2020), Wang and X X X X

Hyperbolic Krstic (2021, 2022a, 2022b, 2022c), Zhang and Yu (2024)
Somathilake et al. (2024), Zhang et al. (2025) X v v X
This work GES v v v v

Table 2 PDEs under ETC. This candidate includes the I?> norms of the

A comparison of the event-triggering mechanisms proposed in this work.

Observer- Cont. check of trig. Event-triggered
based Cond. Not Required Meas. only
CETC v X X
PETC v v X
STC X v v

Karafyllis, 2022; Rathnayake, Diagne, & Karafyllis, 2022; Somathi-
lake et al., 2024; Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023;
Zhang et al., 2025; Zhang & Yu, 2024) strategies for PDE back-
stepping control, all of which require continuous measurements.
Table 1 illustrates how this work fits within the current state of
the art in dynamic event-triggering for PDE backstepping control.

Our CETC and PETC designs are observer-based, requiring
continuous but only boundary measurements collocated with
the actuation. Our STC design requires full-state measurements;
however, unlike CETC and PETC, it does not require continuous
measurements for the triggering mechanism, only measurements
taken at events generated by the self-triggering mechanism. Both
PETC and STC eliminate the drawback of CETC, which requires
continuous monitoring of a triggering condition to detect events.
PETC addresses this by checking an appropriate triggering condi-
tion periodically, while STC computes the next event time at the
current event time using event-triggered measurements. Table 2
presents a qualitative comparison of the designs proposed in this
work.

The design of the CETC approach involves explicitly enforcing
a suitable lower bound, T > 0, on the time between two events,
thereby ruling out Zeno behavior. This contrasts with (Demir,
Koga, & Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b,
2020; Rathnayake & Diagne, 2024a; Rathnayake et al., 2025; Rath-
nayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake, Diagne, &
Karafyllis, 2022; Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023;
Zhang et al.,, 2025; Zhang & Yu, 2024), where the existence of a
minimum dwell-time is not explicitly evident from the triggering
condition and requires proof of its existence. We introduce a
switching dynamic variable that remains non-negative between
the last event at time f; and t; + 7, for j € N, and is allowed to
decrease until the next event, which occurs at time t;;4,j € N at
the zero-crossing of the dynamic variable. The concept of time
regularization to enforce an MDT and the use of a switching
dynamic variable is not entirely novel in PDE ETC. For example,
see Kang et al. (2023), Katz et al. (2021), where the authors
propose dynamic ETC strategies for parabolic PDEs, using argu-
ments involving linear matrix inequalities. However, our work is
primarily inspired by Dolk and Heemels (2017), Dolk, Ploeg, and
Heemels (2017), Dolk, Tesi, De Persis, and Heemels (2017), where
dynamic ETC approaches are developed for networked control
systems described by ordinary differential equations, employing
switching dynamic variables. Drawing from these ideas, we con-
struct a novel Lyapunov candidate for 2 x 2 linear hyperbolic

observer and observer error target system states, the switching
dynamic variable, and a state-independent dynamic reset variable
that is modulated by the control input sampling error. Through
a careful choice of the switching dynamics, its initial conditions
at each event, and an appropriate MDT t > 0 derived from
the state-independent dynamic reset variable, we establish that
the Lyapunov function remains dissipative along the closed-loop
system dynamics despite the event-triggered application of the
control input with zero-order hold. This allows us to establish, for
the first time, GES under PDE backstepping with dynamic event-
triggering. The zero-crossing of the switching dynamic variable
must be monitored continuously in time to detect events, hence
the name CETC. The proposed PETC and STC designs overcome
this drawback.

The design of the PETC approach involves: (1) identifying
an appropriate triggering condition that requires only periodic
checks to determine if control updates are necessary, and (2) de-
termining an appropriate upper bound for the allowable sampling
period for periodic checks. Building on the ideas from (Rath-
nayake & Diagne, 2024b), a novel event-triggering function for
PETC is derived by finding an upper bound for the underly-
ing continuous-time event-triggering function. Its derivation ne-
cessitates establishing a sufficiently small upper bound for the
sampling period of the triggering mechanism. Despite the trig-
gering function being evaluated only periodically, as opposed to
the continuous monitoring required in CETC, the PETC mecha-
nism preserves the GES guaranteed by CETC. Since the triggering
condition is checked periodically, Zeno behavior is inherently
absent.

Unlike the proposed CETC and PETC mechanisms, the proposed
STC does not require monitoring any triggering conditions. The
STC triggering mechanism is designed by (1) enforcing an MDT
t > 0, similar to CETC, and (2) identifying an appropriate
waiting time until the next event at time t;,, starting from t; +
t for j € N, using event-triggered measurements only. This
waiting time is derived by utilizing suitable upper bounds on
the system states between events and employing a switching
dynamic variable similar to that in CETC. GES under STC is then
established using Lyapunov arguments akin to those in CETC.
In contrast to CETC, PETC, and previous ETC designs employing
static event-triggering (Espitia et al., 2021; Koga et al., 2023;
Koudohode et al., 2024; Rathnayake & Diagne, 2022) or dynamic
event-triggering (Demir, Diagne, & Krstic, 2024; Demir, Koga, &
Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b, 2020;
Rathnayake & Diagne, 2023, 2024a, 2024b; Rathnayake et al.,
2025; Rathnayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake,
Diagne, & Karafyllis, 2022; Somathilake et al., 2024; Wang &
Krstic, 2021, 20224, 2022b, 2022¢, 2023; Zhang et al., 2025; Zhang
& Yu, 2024), all of which require continuous measurements for
their triggering mechanisms (see Table 1), the proposed STC de-
sign relies solely on event-triggered measurements — specifically,
the measurements at the current event time ¢; and the previous
event time t;_; — to determine the next event time tj;q,j € N.
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The well-posedness of the closed-loop system under all three
ETC approaches is obtained.
Contributions Summary

1. The design of a novel observer-based CETC for 2 x 2
linear hyperbolic PDEs that guarantees GES. To the best
of our knowledge, this is the first approach to achieve
GES for hyperbolic PDEs under dynamic ETC with PDE
backstepping. Previous works such as Demir, Koga, and
Krstic (2024), Espitia (2020), Espitia et al. (2022a, 2022b,
2020), Rathnayake and Diagne (2024a), Rathnayake et al.
(2025), Rathnayake, Diagne, Espitia, and Karafyllis (2022),
Rathnayake, Diagne, and Karafyllis (2022), Wang and Krstic
(2021, 2022a, 2022b, 2022c, 2023), Zhang et al. (2025),
Zhang and Yu (2024), which employ PDE backstepping
with dynamic event-triggering, have only established
(global) exponential convergence.

2. The design of a novel observer-based PETC for 2 x 2 lin-
ear hyperbolic PDEs that guarantees GES. PETC eliminates
the need for continuous checking of a triggering condi-
tion required in CETC, requiring only periodic checks of a
suitable triggering condition. This is the first PETC design
with PDE backstepping that guarantees GES. Previous PETC
approaches using PDE backstepping such as Demir, Diagne,
and Krstic (2024), Rathnayake and Diagne (2023, 2024b),
Rathnayake et al. (2025), Somathilake et al. (2024), Zhang
et al. (2025) have only established (global) exponential
convergence.

3. The design of a novel full-state feedback STC for 2 x 2 lin-
ear hyperbolic PDEs that guarantees GES and requires only
event-triggered measurements for the triggering mecha-
nism. STC eliminates the need for continuous monitoring
of a triggering function required in CETC, and instead cal-
culates the next event time at each event using event-
triggered measurements. This is the first STC design with
PDE backstepping that guarantees GES. Previous STC ap-
proaches using PDE backstepping, such as Rathnayake and
Diagne (2024b), Rathnayake et al. (2025), Somathilake et al.
(2024), Zhang et al. (2025), have only established (global)
exponential convergence. Furthermore, this is the first ETC
design with PDE backstepping that requires only event-
triggered measurements for the triggering mechanism. Pre-
vious works on ETC with PDE backstepping using either
static (Espitia et al., 2021; Koga et al., 2023; Koudohode
et al., 2024; Rathnayake & Diagne, 2022) or dynamic event-
triggering (Demir, Diagne, & Krstic, 2024; Demir, Koga, &
Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b,
2020; Rathnayake & Diagne, 2023, 2024a, 2024b; Rath-
nayake et al., 2025; Rathnayake, Diagne, Espitia, & Karafyl-
lis, 2022; Rathnayake, Diagne, & Karafyllis, 2022; Somathi-
lake et al., 2024; Wang & Krstic, 2021, 2022a, 2022b, 2022c,
2023; Zhang et al., 2025; Zhang & Yu, 2024) require con-
tinuous measurements for the triggering mechanism.

1.3. Organization

The paper is organized as follows. In Section 2, we present
the continuous-time control and its emulation. Sections 3, 4,
and 5 present the CETC, PETC, and STC designs, respectively. A
simulation study is conducted in Section 6 to illustrate the results,
and conclusions are provided in Section 7.

1.4. Notations

Let R be the set of real numbers, R. be the set of positive
real numbers, and R>( be the set of nonnegative real numbers
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including zero. Let N be the set of natural numbers including 0,
and let N, be the set of natural numbers greater than 0. By
12(0, 1), we denote the equivalence class of Lebesgue measurable
functions f : [0, 1] — R such that [If ||,z 1.p) = (fo1 F)H)Y? <
oo. Define c°(I; L?((0, 1); R)) as the space of continuous functions
u(-, t) for an interval I € R.g such that ] > t — u(-,t) €
L((0, 1); R).

2. Preliminaries and problem formulation

Consider the following 2 x 2 linear hyperbolic PDE system in
the canonical form:

ur(x, £) + Aqux(x, t) = c1(x)v(x, t), Vx € (0, 1), (1)
ve(X, t) — davk(x, t) = ca(X)u(x, t), Vx € (0, 1), (2)
with boundary conditions

u(0, t) = qu(0, t), (3)
v(1,t) = pu(1,t) + Uj. (4)

for all t e (t,t11),j € N. The set {tj}jcy represents the se-
quence of control update times, which will later be characterized
under continuous-time event-triggered control (CETC), periodic
event-triggered control (PETC), and self-triggered control (STC)
strategies. The control input U; remains constant for all t €
[t;, ti+1), where j € N. The parameters A, A, > 0 denote the
transport speeds, while the functions c;(x) and c,(x) are such that
c1, ¢ € C°((0, 1); R). The parameter q # O represents the distal
reflection term, and p is the proximal reflection term. The initial
conditions are given by (u°, v°)T e L?((0, 1); R?).
We make the following assumption on the reflection terms.

Assumption 1. The reflection terms are small enough such that
the following inequality holds:

1
logl < e (5)

Remark 1. By performing a spectrum analysis similar to Yu and
Krstic (2022) for the system (1)-(4), with c1(x) = ¢; and c(x) =
¢z, and with U; = 0 (open-loop system), one can show that a
sufficient condition for instability is

4cicy > (M1 + A2 )EL, (6)

where & > 0 is the smallest admissible spatial frequency de-
termined by the boundary conditions. Assumption 1 imposes
dissipative boundary conditions, which do not contribute to insta-
bility. However, in the presence of in-domain couplings between
the two transport PDEs (1) and (2), the condition (6) ensures
that at least one eigenvalue has a positive real part, leading to
instability.

In Vazquez, Krstic, and Coron (2011), among other results, the
authors develop an observer for the system (1)-(4) using u(1, t)
as the available boundary measurement, resulting in a collocated
sensing and actuation setup. This design is presented below. The
observer states (i, v) satisfy for all x € (0, 1)

Ule(x, £) + Aqily(x, £) = c1(x)0(x, ) + p1(*)ii(1, t), (7)
De(x, t) — Aalx(x, t) = ca(X)il(x, t) + p2(x)ii(1, t), (8)

with boundary conditions
u(0, t) = qd(0, t), 9)
d(1,t) = pu(1,t) + Uj, (10)
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for all t € (t;, ti+1),j € N with (&%, 9°)T e [((0, 1); R?), where

i=u—1, (11)
vi=v—0, (12)

are the observer errors satisfying

Ue(x, t) 4 Aile(x, £) = c1(x)o(x, t) — p1(x)u(1, t), (13)
(X, 1) = A20x(X, ) = c2(x)ui(x, t) — pa(x)u(1, t), (14)
for all x € (0, 1), with boundary conditions

u(0, t) = qu(0, t), (15)
(1,t) =0, (16)

for all t > 0. The terms p;(x) and p,(x) are the observer gains
satisfying

p](x)=_)"1paa(x7 1)’ (]7)
pa(x) = — MPP(x, 1). (18)

The gains p1(x), p2(x) are determined using the PDE backstepping
technique equipped with the Volterra transformations

1
i(x, £) =(x, £) — / P (x, y)i(y, t)dy
1
- f P (x, )Ry, )iy, (19)

1
3(x, £) =B(x. ) f PP (x, y)aly. t)dy

X

1
- / PPA(x, )R, t)dy. (20)

X
defined in the triangular domain 0 < x < y < 1. The readers
are referred to Vazquez et al. (2011) for details on the kernels
pee peB pBe pBB Under the transformations (19), (20), and the
observer gains (17), (18), the observer error system (13)-(16) gets
transformed into the following observer error target system

(X, t)+ Aax(x, t) =0,Vx € (0, 1), (21)
Be(x, t) — AaBy(x, t) = 0,Vx € (0, 1), (22)
a(0,t) = qﬁ(O t), (23)

B1,t) = (24)

for all t > 0. The inverse transformations of (19), (20) take the

form

1
&(x, 1) =ii(x, 1) + / Q™ (x, y)i(y, t)dy
1
+ / Q™ (x, y)i(y. t)dy, (25)
1
Blx, £) =i(x, t) + f Q"(x, )iy, )y

1
+ / Q™(x, Y)5(y, t)dy. (26)

where the inverse kernels Q"*, Q"Y, Q"*, Q"" are defined in the
domain 0 < x < y < 1. The readers are referred to Vazquez
et al. (2011) for details on the kernels. The well-posedness of
the closed-loop system (1)-(4), (7)-(10) with piecewise con-
stant inputs between two sampling instants is established in the
following proposition.

Proposition 1 (Espitia, 2020). For any U; € R, (u(-, t;), v(-, t;))T €
[2((0, 1); R?), and (4(-, t;), O(-, )" e I[%((0,1); R ) there exist
unique solutions (u, v)T € CO([t;, ti+11; L3((0, 1);

Automatica 183 (2026) 112617
R2))and (&, D)7 € CO([t;, tj1]; L*((0, 1); R?)) to the systems (1)-(4)
and (7)-(10), respectively, between two time instants t; and tj.

Let us consider the following sampled-data boundary control
law

1 1

U= U= [ NOR. o+ [ NORo. @)
0 0

for all t € [tj, tj+1),j € N, where N* and N* are the control gains

N%(y) =K""(1,y) — pK"™(1,y), (28)
N*(y) =K""(1,y) — pK"*(1,y). (29)
The readers are referred to Vazquez et al. (2011) for details on the
gain kernels K**, K"V, K*", K" defined in the triangular domain
0 < y < x =< 1. The control gains N and NV are derived

via the PDE backstepping technique equipped with the Volterra
transformations

ax, t) =u(x, t) — /X K" (x, y)u(y, t)dy

0

- / K™ (x, Y0y, )y, (30)
0
Blx, t) =b(x, £) — f K™ (x, )y, t)dy
0

f K™ (x, Y00y, t)dy, (31)
0

defined in the domain 0 < y < x < 1. Subject to the
transformations (30), (31), and the control input (27)-(29), the
observer (7)-(10) gets transformed into the following observer
target system

a(x, t) + Aax(x, t) = pr(x)a(1, t), Vx € (0, 1), (32)
Bi(x, t) = MaBy(x, £) = Pa(x)a(1, t), Vx € (0, 1), (33)
&(0, 1) = gB(0, 1), (34)

B(1,t) = pa(1,t)+ pa(1, t) +d(t), (35)

for all t € (¢, tj1),j € N, where

P1(X) =p(x) — / K™(x, y)p1 (y)dy
0 (36)

- / K"(x, y)p2(y)dy,

0

Pa(x) =pax) — f K™ (x, y)pr )y
0 (37)

X
- / K™ (x, y)pa(y)dy.
0

for all x € (0, 1), and d(t) is the control input sampling error
defined as

1
d(t) == U(t) — U(t) :/ N')(ay, ) — Gy, t))dy
0

1 (38)
+ [ N6~ 3. 0)dy.
0
forall t € (tj, tjy1),j € N.
The inverse transformations of (30), (31) take the form
X
it 0 =a0x, 0+ [ 10 a0y, Oy
0
X
+ [ 1 bo. oy, (39)
0

B(x. ) =Bx. 1) + / L (x, y)aly. t)dy
0
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X
+ /0 L (x, y)B(y, t)dy, (40)
where the inverse kernels [**, [*# [P% [PP are defined in the
domain 0 < y < x < 1. The readers are referred to Vazquez
et al. (2011) for details on the inverse kernels.

The control input U; given by (27) can also be expressed
in terms of the inverse kernels and target system states (&, ,3)
as Espitia (2020)

1 1
Ul = Uy = / N“W)a. 6)dy + / NGB, )y, (41)
0 0
for all t € [tj, tj41),j € N, where N* and N# are given by
Ne(y) =LP“(1,y) — pL**(1,y), (42)
NP(y) =LPP(1,y) — pL*(1,y). (43)

Accordingly, the control input sampling error can be rewritten as

1
() = / NO) G0y, 6) — 80, £)dy
0 (44)

1
+ /0 PGB ) — By, 0)dy.

for all t € (t;, tj+1),j € N. We use U; given by (41)-(43) and d(t)
given by (44) in the event-triggering mechanisms to follow.

3. Continuous-time event-triggered control (CETC)

In this section, we present an ETC design that prescribes
control updates only at specific events but requires continu-
ous evaluation of the triggering function to detect these events,
hence the term continuous-time event-triggering. The triggering
mechanism involves designing a switching dynamic variable that
accounts for the effects of control input sampling, thereby pre-
serving the GES of the closed-loop system. The details of the
design are presented below.

Definition 1. Let 7, 6, 1, k2, k3, k4 > 0 be event-trigger param-
eters. The set of event times I = {tj}jen under CETC, which forms
an increasing sequence satisfying lim;_, , tj = 400, is defined by
the following rule:

tipn = inf{t > t; + tim(t) < 0}, (45)
with t = 0, where t > 0 is the MDT to be specified, and m(t)
evolves according to

mt) = — nm(t) + i1 |&[E11% + ie2ll BLETII

46

+ K362(1, t) + ka@*(1, 1), (46)
forallt e (tj, tj+ ), j € N, and

m(t) = — nm(t) — 0d>(t) + i |QLENN? + izl BLET I (47)

+ K3&3(1, t) + ka@?(1, t),

forall t € ( + 7,t41), j € N, with m(tp) = m(0) = 0,
m(t;) > 0, j € N. to be chosen appropriately at each event time,
and m((tj + t)7) = m(tj + 7),j € N. In (46) and (47), &[t] and
ﬁ[t] are defined in (30) and (31), respectively. In (47), d(t) is given
n (44). From (11) and (19), it follows that a(1,t) = u(1,t) =
u(1,t)—1u(1,t).

Assumption 2 (Event-trigger Parameter Selection). The parameters
1, K1, K2, k3, k4 > 0 are free parameters, and the parameter 6 > 0
is chosen as

0 = (12603 + ajwo + aop, (48)
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where a4, a3, wy > 0, and

a = 3CPe’ + 2. (49)
ap

Here,
2

g0 = 523 (NF(1))°, (50)

where NP(y) is given in (43), and subject to Assumption 1, the
parameter pu is selected such that

A 1
2 n(——), (51)
A+ Ay 3p2¢?

and C > 0 is chosen to satisfy

n

e &3
C > max{ — (——i—/{g),
1— 3p2q2eu(ﬂ+5> @
1 max{eq, &3}r
nw—2_a az

+ max{k1, Kz}r> } (52)

for some § > 0 such that § < u, and

1
r= m (53)
£ = 512 /o 1 (N*(y))” dy, (54)
£3 = 52 / 1 (NP ()’ dy, (55)
£65=5 (All(\)l‘)‘(l) — pANA(1)?. (56)

Here, N%(y) is given in (42).

Theorem 1. Consider a set of increasing event times I = {tj}jen
with ty = 0, satisfying limj_,t; = +oo, generated by the
CETC triggering rule in Definition 1. For every (u(-, 0), v(-, 0))] €
12((0, 1); R?), and (ii(-, 0), (-, 0))" e L?((0, 1); R?), there exist
unique solutions (u, v)’ € C%(R.q; [*((0, 1); R?)) and (@i, )T e
CO(R~0; L2((0, 1); R?)) to (1)=(4), (7)-(10), (17), (18), (41)=(43).
Choose the event-trigger parameters n, 6, k1, k2, k3,

k4 > 0 as in Assumption 2, and the MDT t > 0 as

- / — s, (57)
wy @28 + a1s+ ag

forany wy > wg > 0, ay,a; > 0, and ap > 0 given by (49). Further,
choose the initial conditions of m(t) satisfying (46), (47) as

m(to) = m(0) = 0, (58)
m((t + 7)) =m(t + 7). forjeN, (59)
m(t) = wodX(t”) = wo(Ui—1 — Uj)°, forj € Noy, (60)

where Uj,j € N given by (41) is the control input updated at
t = t;. Then, under the CETC triggering rule in Definition 1, the
closed-loop system (1)-(4), (7)-(10), (17), (18), (41)-(43) is globally
exponentially stable. More specifically, the following estimate holds:

&(t) < Muce™ F0(0), (61)
forall t > 0, where
@(t) = [[ult]ll + larelll + lvlelll + I1oLell, (62)

for some constants Meyc, v > 0.

etc
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m(t)h

m(ty)|--f———

t

t1+T tQ

Fig. 1. A schematic of evolution of m(t). Note that m(to) = 0 and m((t;+7)") =
m(tj+7),j € N, whereas m(t;) > 0,j € N, is appropriately chosen at each event
t=t.

Remark 2. Using partial fraction expansion, it can be shown that
the MDT 7 > 0 chosen as (57) can be expressed as

%’ if A= 0,
az(w1+%)(a)o+%)
Ny
o (@1—wp) .
ﬁln(l—i— p 1T ),1fA>O,
T = (w1+a1;;;/2> (w0+7012;;/2) (63)
5 _1 j%(wl_wO) .
7= tan y” - - ,if A <0,
I—Tz(w1+ﬁ)(wg+ﬁ)
where
A = a? — dagay. (64)

In the following subsection, we complete the proof of Theorem
1.

3.1. Proof of Theorem 1

3.1.1. Preliminaries
Before proceeding to the proof of Theorem 1, we provide
several necessary auxiliary results below in Lemmas 1-3.

Lemma 1. Consider a set of increasing event times I = {tj}jen
with ty = 0, satisfying limj_. t; = +oo, generated by the CETC
triggering rule in Definition 1. Then, for the dynamic variable m(t)
governed by (46), (47) with m(0) = 0, m(t;) > 0,j € N.q to be
chosen, and m((tj +t)~) = m(t;+ 7),j € N for any > 0, it holds
that m(t) > 0 for all t > 0.

Proof. Let m(tp) = 0 and m(t;),j € N.o be such that m(t;) > 0.
Then, we have from (46) that

t
mie) =Vt + [ e 0 (late?
] (65)

+ 1l BIEIE +ad(1. §) + ka1, 6) ) d = 0,

forall t € (t,t + tl,j € N. After t = t; 4 7, the variable
m(t) evolves according to (47), and an event would trigger at
t = tjy1 according to (45) to ensure that m(t) > 0 for all
t € (t + 7,t4+1),j € N. Following the same line of reasoning,
starting with m(ty) = 0, it can be shown that m(t) > 0 for all
t > 0. O

In Fig. 1, we have shown a schematic of evolution of m(t).

Lemma 2. Consider a set of increasing event times I = ({tj}jen
with to = 0, satisfying lim;_, t; = 400, generated by the CETC
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»

i

i

i

|
tj tj + 7 tj«H t]'+1 + 7 f,]‘+2 Vt
Fig. 2. A schematic of evolution of the reset function f(t). Note that f(t;) = w1,
f((ti+7)7) =f(tj+ 1) = wo, and f(t) = ap for all t € [t; + T, t41),j € N.

triggering rule in Definition 1. Then, for d(t) given by (44), it holds
that

(d(t)* <eod®(t) + erllGlt1l? + 211 BLE1II2
+ £38%(1, t) + £4a%(1, 1), (66)

forall t € (t, tjiy1),j € N, where gq, €1, &2, 83 > 0 are given by
(50), (54)-(56), respectively, and
2

1
£4=5 (/ (N“W)P1y) + NP (y)pa(v)) dy + pAzNﬂ(1)> . (67)
0

Here, N%(y), p1(y), and p,(y) are given in (42), (17), and (18),
respectively.

The proof is very similar to that of Lemma 2 in Espitia (2020),
and hence is omitted.

Lemma 3. Consider a set of increasing event times I = {{j}jen
with ty = 0, satisfying lim;_, . t; = 400, generated by the CETC
triggering rule in Definition 1. Let the MDT t > 0 be chosen as in
(57), for any ag, a1, a, > 0 and w, > wy > 0. Then, for a piecewise
right-continuous reset function f(t) : R>o — R.¢ satisfying

—aof%(t) — arf (t) — ap, forallt € (4, & + 7),

68
0, forallt € (& + 7, tj11), (68)

fioy= {
forall j e N, with f(tj)) = w1 > 0 andf((tj + r)‘) =f(tj+ ), it
follows that f(t) strictly decreases from f(t;) = w; to f(tj+ 1) = wo
over t € [tj,tj + t), and remains constant at f(t) = wo for all
t €[t+, tipr).

Proof. Considering (68) and noting that ¢ > 0 is chosen as in
(57), we can straightforwardly show that f(t) goes from w; > 0 to
o > 0 when t goes from ¢ = ¢; to t = tj+ 7. We can also observe
from (68) for all t € (t;, tj 4 7) that f(t) is negative when f(t) > 0,
forcing f(t) to strictly decrease. Thus, the function f(t) strictly
decreases for all t € [¢;, tj + 7) from f(t;) = w; to f( + T) = wo.
However, since f(t) = 0 for all t € (t; + 7, tj+1), the function f(t)
remains constant at f(t) = wp for all t € [tj + 7, tjy1). a

In Fig. 2, we have shown a schematic of evolution of the reset
function f(t).

3.1.2. Main proof

With Proposition 1 and Lemmas 1-3 in hand, we are now in
a position to proceed with the proof of Theorem 1.

The well-posedness, in the sense of Theorem 1, is established
by applying Proposition 1 iteratively between events. It follows
from Lemma 1 that m(t) > 0 for all t > 0, and from Lemma 3
that f(t) > 0 for all t > 0 if the MDT t > 0 is chosen as (57).
Thus, we consider the following Lyapunov candidate:

Wy () = Wi () + F(6)d*(6) + m(e), (69)
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where
Wi(t) = V() + Va(1), (70)
with
1 HX - X
vl(r):/ (A&Z(X,t)e‘ﬂ + E,32(x,t)eﬁ>dx, (71)
0 \ A A2
1 J223 ux
Vz(t)=/ (C 2(x, t)e ™ + ﬂ (x, t)e* )dx. (72)
0o \M

Let the parameter i > 0 be chosen as in (51), C > 0 be chosen
as in (52), A > 0 be chosen such that

2
Lo Clpil* | Cglipa)Pe’ 2 0 L &4
A >e* ( + +3C ez 4+ =
A1d A6 ra a (73)

+K4>,

for some § > 0 such that 4 > §, and B,D > 0 to be chosen
later. In (71) and (72), (@, B) satisfies (21)-(24) for all t > 0, and
(@, B) satisfies (32)—(35) for all t € (tj,ti+1),j € N. Taking the
time derivative of V;(t) and V,(t) for all t € (t;, tj+1),j € N and
integrating by parts, we obtain that

Vi(t) = —uVi(t)
and

—AG(1,t)e 1 — (B — AgY)BA(0, ), (74)

. 2C /(! o
Vz(f)z—/vbvz(f%l-f ([ atxopicoe e ) a0
0

/ﬂxtpz A§dx)o7(1,r) (75)

— C&? (1 te i — (D — Cg*)B%(0, t) + DB*(1, )
From Young s and Cauchy-Schwarz 1nequa11t1es and consider-
ing (35), we obtain that

B0 = 380 + 30671, 0 + 30°%67(1, 1) (76)
1 o 1 UX
° 0

IIP;II &(1.1), 77)

1 x 1 x
2 ( / B(x, t)ﬁz(x)eﬁdx) a(1,t) < 8/ B%(x, t)e*2 dx
0 0

I
o
) (78)

for all t > 0, for some § > 0. Thus, we write from (74), (7
Vi(t) + Valt) < —pVi(t) — uVa(t) + 8Vs(t)
- ( Ce '1 —3p2De’ ) &%(1,t) — (D — Cg)B(0, 1)

5) that

I
_x  Clp1* Dlpy|%e*2 "
_ (Ae £ _ Clpall” _ Dlip.|l _ 3p%Dels )6[2(“)
218 A28
— (B— Ag)BA(0, t) + 3De’2 (), (79)

for all t € (tj, tj+1),j € N. Let us choose B = Ag? and D = Cg*.

Then, (79) reduces to
Vi(6) + Va(t) < —pVa(t) — uVa(t) + 8Vs(t)

1 1
_ et ( 1-— 3p2q2e"(ﬂ+5) ) a(1,t)

s
~(ah - I Cripre
)\.15 )\2(S
s ®
— 3Cp’gle ) &%(1,t) + 3CqPe™ d(t), (80)
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valid for all t € (tj, tjy1),j € N. Now let us consider W;(t) given
by (69) forall t € (tj,tj+ 7),j € N.

Forallt e (tj, i+ 1),j € N:

Taking the time derivative of (69) for all t € (¢, t; + 7),j € N,
using Young’s inequality, and considering (46), (66), (68), (80), we
write that

Wa(t) = Vi(t) + Va(t) + f(£)d?(¢) + 2f (£)d(t)d(t) + mt)
< Vi(t) + Va(t) + F(£)d?(£) + aaf 2(£)d?(t)
+ l(ii(t))2 T 1(t)
a
< —uVi(t) — pVa(t) + 8Vy(t)
e Hr ( 1— 3p2qze“(‘1 +3) ) &%(1,t)
e CIRIP Clpale
(e - s s L
—3Cp’qetz ) &(1,1)
+3CqPe’2 (1) — (anf (1) + a1f( )+ ao)dz( )
+ arf*(t)d*(t) + 8—°d2(t) ||a[t]|| + ||ﬂ[t]||

+z &1, 0 + a2, t)—nm(t)+m||a[t]||

2 ‘12
+ 1| BIEN? + k3@%(1, ) + ka@(1, 1),

for some a, > 0. Note from (72) that we can write recalling our
choice D = Cg? that

I&Iell> + 1IN < *Vz( ), (82)

for all t > 0, where r is given by (53). Therefore, (81) can be
rewritten as

Wz(t) < —/,LV](t)
ma ,&}r  ma , K2gT
s x{e1, e2)r  max{xy, K2} V()
Caz C
- (afﬁ ( 1— 3p2q2e“(ﬁ+i) ) -2 ) &*(1,1)
az
. B n (83)
(aets GBI G IpaI
)»]5 )¥25
— 300t - 2 -y ) 0,1)
az
2 2,4 o 2
— aif ()d*(t)— ( ap — 3Cqe’z — o d=(t) — nm(t).
2
Let
max R r max . r
Vete i= 4 — 8 — 1#1, &2} iy, o) (84)

Ca, B C ’
and note from (52) that choice of § > 0 such that § < x and the
choice of C > 0 ensures v > 0. Furthermore, the same choice of

_ 1
C > 0in(52) ensures Ce” *1 1—3,02q2e”(h+ 2
since the choice of u > 0 as in (51) subject to Assumption 1 leads

—K3>0

1,1
to1l— 3p2q2e“(‘1 *72) > 0. Therefore, noting that A > 0 chosen
e 2 25 12,77 "
as in (73) ensures Ae *1 — C”fllﬁ” -G ”’izz”se 2 _3CpqRe’z —

6—‘2‘ — k4 > 0 and choosing ay > 0 as (49), we rewrite (83) as
Wa(t) < —veeWs(t) — arf (£)d*(t) — nm(t)

< —vg Wa(t),
forall t € (tj, t; + 7),j € N, where

(85)

Ve 7= Min{vetc, a1, 1} (86)
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Forallt e (tj+ 7, tjy1),j € N:

For all t € (t; + 7, t41),j € N, we have that f(t) = wg > 0
(see Lemma 3). Taking the time derivative of (69) for all t €
(ti+7,ti+1),J € N, using Young's inequality, and considering (47),
(66), (68), (80), we can write that

= Vi(t) + Vo(t) + 2wod(t)d(t) + m(t)
L (@) + o)
ap

Wa(t)

< Vi(t) + Vo(t) + apwdd?(t) +

—uVi(t) — uVa(t) + §Va(t)
—ce ( zqze“(hﬁ) ) &*(1,t)
o
o ClImIE CqlpalRe
(aehs - IR Gl )
o 2
—3Cp2gPer ) &1, r)+3Cq2e%d2( )+a2wod2( )
&
+a£d2() || (111 + ||13[f]|| + &*(1,t)
2

+ zia (1.6)— nm(t) - 0d2(r) s ||a[r1||
2

+ 16 lIBIETN + 13@2(1, £) 4 ka@?(1, t).
Recalling (82) and rearranging (87), we obtain that
max{es, £2)r

Wy(t) < — puVi(t)— (M—S C
az

B max{;g,/cz}r ) V(1)

_ <C37% (]— 3)0 qze”’( 1+%) )

—8—3—/@)&2(1,0 (88)
a

_ _ »
3 (Ae-% _ Clpil®>  Ca’lipal®e*
PRT A28
2.2 4 &4 )
—3Cp°qe*2 ———K4>0{ (1,¢)
az
2.+ €0 2\ g2
— (6 —=3Cg°e*2 — — —awy ) d°(t) — nm(t).
az
By selecting 6 > 0 as (48), (49), we simplify (88) to obtain

max{eq, &)1

Wy(t) < — pnVi(t)— (M—5 C
az

B max{/ccl,/cz}r ) V(1)

- (afﬁ (1— 3p2qe (%) )

_ _ "
B T
)\.15 )\28
&
-2 ) @1,
a;

— aywod?(t) — nm(t).

o
— 3Cp3g’e’2

Then, following steps similar to (84)-(86) and recalling from
Lemma 3 that f(t) = wo > Oforallt € [t; + 7,t41).j € N,
we can show that

Wa(t) < =g Wi(t), (90)
forall t e (tj+ 7, tj11),j € N.
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Recall that m(tj+7) is chosen such that m((t;+7)~) = m(tj+7),
and from Lemma 3 that f ((t;+7)~) = f(tj+7) = wo. Further, note

that d((t;+7)") = d(t;+7) and that ||&[e]]], |BL1I], @Lel], 1ALl
are continuous. Thus, considering (85), (90), (69)-(72), it can be
shown that

Ws(t) < e =Wy (1), (91)
for all t € (tj, ti+1),j € N. But we have that
Wa(t7) =Wi(t7) + F(¢7)d>(7) + m(t)
=Wi(t]) + wod(t)") (92)
=W () + wod?(t;),

as f(tj_) = wp (see Lemma 3) and m(t.) = 0 (since events are
triggered according to (45)). On the other hand, we have that

Wa(ty) = Wi(t) + F(5)d2(6) + m(ty) = Wi (g) + m(), (93)
as d(t;) = 0. Thus, if m(t;) is chosen as in (60), we have that
Wa(t;) = Wa(ty), forj € Nuo. (94)
Therefore, using (91) and (94) recursively, we can show that
Wo(t) Se_vgfc(t_[j)WZ(tj) — e_”e*ff(t_[f)wz(tj*)

Sefvgtc(tftj) X efvgtc(tj*tj—l )Wz(tj—l )

. (95)
<e Valt=h) ﬁe’“gtc(tf’tf*‘)WZ(O)
i=1
=e Y Wy(0),
for all t > 0. But we have that
W,(0) = W1(0) + f(0)d*(0) + m(0) = W;(0), (96)
as d(0) = 0 and m(0) = 0, and
Wi (t) < Wa(t), (97)
for all t > 0. Thus, it follows from (95) that
Wi(t) < et Wy (0), (98)

for all t > 0. Then, using the standard arguments of PDE back-
stepping involving the bounded invertibility of the transforma-
tions (19), (20), (25), (26), (30), (31), (39), (40), we obtain (61).
This completes the proof of Theorem 1. a

Remark 3. In existing dynamic CETC approaches using PDE back-
stepping for both parabolic PDEs (Demir, Koga, & Krstic, 2024;
Rathnayake & Diagne, 2024a; Rathnayake et al., 2025; Rath-
nayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake, Diagne, &
Karafyllis, 2022; Wang & Krstic, 2023) and hyperbolic PDEs (Es-
pitia, 2020; Espitia et al.,, 2022a, 2022b, 2020; Wang & Krstic,
2021, 2022a, 2022b, 2022c; Zhang et al., 2025; Zhang & Yu, 2024),
the authors have only been able to establish (global) exponential
convergence of the closed-loop system to the origin, satisfying an
estimate of the form

o(t) < Me™ 7 (IIU[O]II2 + la[o1)? + [v[oy)?

12 (99)
+ lloo])? +m(0)> ,

for all ¢ > 0, where &(t) is given by (62), M > 0 and v* > 0

are some positive constants, and m(0) is strictly positive. Unlike
the current work, where an MDT between two events is explicitly
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enforced, the aforementioned works require proving the exis-
tence of an MDT since such time regularization between events
is not explicitly enforced. The approach used by the authors in
those works to demonstrate the existence of an MDT between
events under the triggering conditions necessitates that m(0)
be chosen strictly positive. This constraint prevents the authors
from obtaining an exponential stabilization result as (61), (62).
However, in this work, due to the use of time regularization in
the triggering mechanism (45) as well as the use of switching
dynamics (46), (47) for the dynamic variable m(t), we are able
to choose m(0) 0. This, along with the careful choice of
the Lyapunov candidate (69)-(72) consisting of a dynamic reset
variable f(t) satisfying (68), facilitates the achievement of the GES
of the closed-loop system.

Remark 4. The closed-loop system Lyapunov candidate W(t),
given by (69)-(72), has been carefully chosen to ensure that it re-
mains dissipative even though the system operates in open-loop
between events. The functions f(t)d?(t) and m(t) are employed to
mitigate the effects of control input sampling, with their effects
manifesting over different intervals between events, specifically
(t,t;+ ) and (t; + 7, tj+1),j € N. During the interval t € (;, t; +
7),j € N, the strictly decreasing function f(t), modulated by d?(t),
compensates for the effects of input sampling. Meanwhile, during
the interval t € (tj + 7, tj41),j € N, the dynamic variable m(t)
compensates for these effects. In works such as Dolk and Heemels
(2017), Dolk, Ploeg, and Heemels (2017), Dolk, Tesi, et al. (2017),
similar Lyapunov candidates have been employed for systems
described by ODEs.

The CETC design (41)-(43), (45)-(47) automatically provides
an aperiodic sampled-data control approach characterized by a
maximum upper diameter equal to the MDT t > O of the CETC,
ensuring the GES. The result is summarized in the following
corollary.

Corollary 1. Consider a set of sampling times I = ({tj}jen Wwith
to = 0 satisfying lim;_, o tj = +o0. For every (u(-, 0), v(-, o) e
L%((0, 1); R?), and (u(-, 0), d(-,0))T e L?*((0, 1); R?), there ex-
ist unique solutions (u,v)’ e C%R.¢; L*((0, 1); R?)), (&, D) €
CO(Ro: L*((0, 1); R?)) to the systems (1)-(4), (7)-(10), (17), (18),
(41)~(43). Let supj~o(tjy1 — tj) < , where T > 0 is chosen as in
(57) with a1, a, > 0, w1 > wg > 0 being free parameters, and let
ag > 0 be chosen such that

N
ap = 3CgPe’z + 22, (100)
ap
where gy > 0 is given by (50), subject to Assumption 1, u is chosen
asin (51), and C > 0 is chosen such that

1- 3p2qze”( }

"
et

for some § > 0 such that § < u, and &1,&2,63 > 0 given

by (54)-(56), and r defined as (53). Then, under the sampled-

data boundary control (41)-(43), the closed-loop system (1)-(4),

(7)-(10), (17), (18) is globally exponentially stable. More specifically,

the following estimate holds:

g3 max{eq, &}r
ﬁ+%) a;’ (u—38)a;

C> max{ (101)

®(t) < Me™ 2 (0), (102)

for some constants M, v* > 0.

The proof follows a procedure similar to that used in the proof
of Theorem 1, using the Lyapunov function (69)-(72) with m(t) =
0 for all t > 0.
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4. Periodic event-triggered control (PETC)

In this section, we present a triggering design that facilitates
control updates only at specific events and requires only periodic
evaluation of a triggering function to detect events, hence the
term periodic event-triggering. We develop an appropriate trigger-
ing function, m(t), and establish an upper bound for the sampling
period h > 0 used for these periodic evaluations. Periodically
evaluating m(t) and updating the control input whenever m(t) <
0 at an evaluation time t = nh, n € N ensures that the dynamic
variable m(t) governed by (46), (47) satisfies m(t) > 0 for all
t > 0 along the PETC solution. This enables establishing the GES
of the PETC closed-loop system, analogous to Theorem 1. Below,
we present the details of the design.

Definition 2. Let n, 0, k1, k2, k3, k4 > 0 be event-trigger param-
eters. The set of event times I = {{;}jen under PETC, which forms
an increasing sequence satisfying lim;_,, tj = 400, is defined by
the following rule:

tipr =inf{t > t;+7 | m(t) <0, t =nh, h>0,neN}, (103)

where t > 0 is the MDT to be specified, and h > 0 is a sampling
period to be chosen appropriately. The function m(t) is defined as

1) d(¢),

where d(t) is given in (44), and m(t) satisfies (46) and (47). The
constant a is defined as

f(t) :== m(t) — % (e — (104)

a=1+¢e+n, (105)

with &g given by (50).

Theorem 2. Consider a set of increasing event times I = ({tj}jen
with to = 0, satisfying limj_, t; = +oo, generated by the
PETC triggering rule in Definition 2. For every (u(-,0), v(-, 0))] €
12((0, 1); R?), and (ii(-, 0), (-, 0))T e L?((0, 1); R?), there exist
unique solutions (u, v)T € C%R.g; L?((0, 1); R?)) and (iI, ) €
CO%(Rso; L*((0, 1); R?)) to (1)=(4), (7)-(10), (17), (18), (41)~(43).
Choose the event-trigger parameters n, 0, k1, k2, k3, k4 > 0 as in
Assumption 2, and the MDT t > 0 as (57). Let the sampling period
h > 0 satisfy

T
0 < h < min{r, 11, 12, 73, T4}, and h € N.o, (106)
where
1 Kkid .
r,»::fln(l—i-—), i=1,234, (107)
a «5‘1‘9

with €1, &7, €3, &4 > 0 given by (54)—(56), (67) and a > 0 given
by (105). Further, choose the initial conditions of m(t) satisfying
(46), (47) as in (58)-(60). Then, under the PETC triggering rule in
Definition 2, the closed-loop system (1)-(4), (7)-(10), (17), (18),
(41)-(43) is globally exponentially stable, satisfying the estimate
(61), (62).

Remark 5. In the PETC triggering function (104), as h — 0, we
observe that

(108)

That is, PETC in Definition 2 converges to CETC in Definition 1
as h — 0. This observation reveals two key insights. First, if h
is very small, one can safely implement CETC on a computer by
periodically checking the triggering function m(t) at intervals of
length h or less to detect events. However, such a small h is gen-
erally undesirable due to the computational burden of frequent
evaluations. Second, if it is possible to choose a large value for

m(t) — m(t).
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h, PETC should be preferred over CETC, since PETC is specifically
designed to require only periodic evaluations of the triggering
function m(t) to detect events.

Remark 6. Although the sampling period h > 0 must be chosen

to be less than the MDT t > 0, we still retain some degree of

freedom in selecting h. Considering (63) under the case A = 0,
w1 — Wo

we obtain
a a)’
2a2) (a)o + 202>

Instead of directly calculating the MDT t, we may choose any
T > 0 such that

T = (109)

az <w1 +

1
O<t< , (110)
a (a)o + 20712)
and then compute w1 > wg using (109) as
wo + % ((,()0 + 2‘1712)
w1 = (111)

a )’
2ay

Therefore, we have some flexibility in selecting the MDT 7 > 0
and, consequently, the sampling period h > 0.

1—r1ay (a)o~|—

In the following subsection, we complete the proof of Theorem
2.

4.1. Proof of Theorem 2

4.1.1. Preliminaries
Before proceeding to the proof of Theorem 2, we provide
several necessary auxiliary results below in Lemmas 4 and 5.

Lemma 4. Consider a set of increasing event times I = {tj}jen
with ty 0 satisfying limj_. t; = 400, generated by the PETC
triggering rule in Definition 2. Also, consider the dynamic variable
m(t) governed by (46), (47) with m(tp) = 0, m(t;) > 0, j € Noo
to be chosen, and m((tj + t)’) =m(tj+ ), jeNforany v > 0.
Then, it holds that m(t) > 0 for all t € (tj, tj + 7], j € N. Choose the
sampling period h > 0 as in (106), (107). Then, it holds that

m(t) > g (gm(nh) — ("t — 1)d2(nh)> e~ E=nh), (112)

for all t € [nh,(n+ 1)h) and n € [(; + )/h, tiz1/h) NN, where
d(t) is given by (44).

Proof. If m(ty) = 0, m(tj) > 0,j € N.o to be chosen, and
m((t; + 7)7) = m(t; + 7),j € N, using similar arguments used
in the proof of Lemma 1, it can be shown that m(t) > 0 for all
te( i+l jeN
Forall t € (nh, (n+1)h) and n € [(t;+ t)/h, ti11/h) NN, using
Young's inequality and considering (66), we can write that
(d(0)) = 2d(t)d(t) < d(6) + (d(t))?
< (14 eo)d?(t) + eq @[] + 21l BT

+£36%(1, t) + e48%(1, 1)
Since the both sides of the inequality (113) are well-behaved,
there exists «(t) > 0 such that
(d2(1)) =(1+ £0)d*(t) + exll@lt]ll* + &2 L1

+ £38%(1, t) + e46(1, ) — 1(2),

(113)

(114)
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forall t € (nh,(n+1)h)andn € [(tj—i-r)/h, tj+1/h)ﬁN. Combining
(47) and (114), we can write the following system valid for all
t € (nh,(n+ 1h) and n € [(; + 7)/h, tiy1/h) NN

2(t) = Az(t) + ¥ (1), (115)
where
_ | m(t) |- -0
2t = [dz(t)]’ A= [ 0 1+80]
a[t]]? BIE1NZ 4 k3@?(1, t) + ka@?(1, t) (118)
u(t |:K1|A|a[t]£| +Kg||ﬁ[2]ll +A12<30t( D+ read(1, ]
erllalt]I*+ea I BIEIN +e367(1, t)+eaa™(1, t)—u(t)

Thus, from (115), we can obtain that
t

2(6) = AMauh+ [ A Oyends, (117)
nh

for all t € [nh,(n + 1)h) and n € [(t; + 7)/h, tix1/h) NN, from
which it follows that

m(t) = Re*="z(nh) + / ReAt=8)y(£)de, (118)

nh
forall t € [nh,(n+ 1)h)and n € [(tj + t)/h, tj+1/h) NN, where

R=1 0]. (119)

The eigenvalues of A are —»n and 1 + &¢. Using matrix diagonal-
ization, e’ can be obtained as

a_ |1 87 [em 0 1 g
“ =lo 11| o ed+ed |10 1|

where a is given by (105). Therefore, we can show that
RACOy(e) = (gt — &) — evgalt — ) ) g1

+ (Kot = §) = cagalt = §) ) IBLEINP

+ (et —9-ene-5)a1e (12D

+ ((Kagi(t — ) — eagat — §) ) @%(1,6)
+ galt — E1(6)

(120)

where
sit)=e" >0, (122)
and
9 at —nt
o(t) = a(e —1)e " >0. (123)

Considering (122) and (123), recalling that nh < & <t < (n+1)h,
and that h > 0 has been chosen as in (106), (107), it can be shown

that
) e~ t=8)

&i0 Kia _
Kigi(t — &) — eiga(t — &) = — ( T4 — — 9
a 8,’9

2% (1-1-2%;—6“’1)6’”“20,
(124)
fori =1, 2, 3, 4. Thus, it follows from (121) that
R4y (£) = 0, (125)

forall t,& suchthat nh < & <t < (n+ 1)h,and n € [(tj +
7)/h, tj11/h) NN. Therefore, considering (118)-(120), (125), it can
be shown that

m(t) >Re*"Mz(nh)
_? ( & innh) — (126)

. 5 (ea(tfnh) _ 1)d2(nh) ) efn(tfnh).
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for all t € [nh,(n+ 1)h) and n € [(t + )/h, tjz1/h) N N. This

completes the proof. a
Lemma 5. Consider a set of increasing event times I = {tj}jen
with tp = 0 satisfying limj_.o tj = 400, generated by the PETC

triggering rule in Definition 2. Also consider the dynamic variable
m(t) governed by (46), (47) with m(tp) = 0, m(t;) > 0,j € N.¢ to
be chosen, and m((tj + r)‘) =m(tj+1),j €N, forany t > 0.
Let the sampling period h > 0 be chosen as in (106), (107). Then, it
holds that m(t) > 0 for all t > 0.

Proof. Let us assume an event has triggered at t = t; and m(t;) >
0,j € N. Then, it follows from Lemma 4 that m(t) > 0 for all
t e (t, tj +tl,j € N. At every t = nh, the periodic event-trigger
(103)-(105) is evaluated, leading to an event trigger only if t >
t;+ 7 and m(nh) < 0,ie, m(nh) < (e — 1)d?(nh), necessitating
a control update. In cases when t > t; +  and m(nh) > 0, ie,
m(nh) > £(e%" — 1)d?(nh), an update is not required as it holds
that m(t) > 0 for all ¢t € [nh, (n+ 1)h). This is because the RHS of
(112) is definitely non-negative when m(nh) > £ (e — 1)d?(nh).
Thus, m(t) will remain non-negative at least until t = t;;; when
m(t,) < O, ie, mt;,) < %(e" — 1)d*(t,), at which the
control input is updated, and m(t;;1) > 0 is chosen. Therefore,
if m(tp) = 0 and m(t;) > 0,j € N, it holds that m(t) > 0 for all
t € (t + 7, ti41),j € N, implying that m(t) > 0 for all t > 0. This
completes the proof. a

4.1.2. Main proof

With Proposition 1 and Lemmas 4 and 5 in hand, we are now
in a position to proceed with the proof of Theorem 2.

The well-posedness in the sense of Theorem 2 is obtained by
applying Proposition 1 iteratively in between events.

Since the initial conditions of m(t) are chosen as (58)-(60) and
the sampling period h > 0 is chosen as in (106), (107), it follows
from Lemma 5 that m(t) > 0 for all t > 0. Furthermore, since
the MDT t > 0 is chosen as in (57), it follows from Lemma 3
that for the function f(t) satisfying (68), with f(t;) = w; > 0 and
f((+ 1)) =f(tj+ 1) = wo > O for all j € N, we have f(t) > 0
for all t > 0. Thus, we can follow the same proof procedure as in
the proof of Theorem 1, using the Lyapunov candidate (69)-(73),
to establish the GES of the closed-loop system under the PETC
approach. The only difference is that as opposed to (92) where
m(tj‘) = 0, under PETC, it holds that

Wa(t;") = Wi(t) + wod*(t7) + m(t;"), (127)

where m(t;) > 0 (see Lemma 5). However, since m(t;) is chosen
as (60) and that d(t;) = 0, we have that

Wa(tj) = Wi(t;) + wodz(tj_) = Wa(t;). (128)

Then, using similar arguments to those used in (95)-(98), the GES
of the closed-loop system is obtained. This completes the proof of
Theorem 2. o

5. Self-triggered control (STC)

In this section, we consider the full-state feedback problem
only. Thus, dismissing the observer-induced effects in Section 2,
we write the full-state feedback sampled-data control input as
1

NP(y)By, t)dy,  (129)

1
Uty = U= [ NGt i+ [

0 0
for all t € [tj, tj11),j € N, where N¢, N# are given by (42), (43),
and («, B) satisfies

ar(x, t) + Arax(x, t) = 0, Vx € (0, 1), (130)
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Be(x,t) — A Bi(x,t) =0, Vx € (0, 1), (131)
a(0, t) = qpB(0, t), (132)
B(1,t) = pa(1,t)+ d(t), (133)

for all t € (,t4+1),j € N, with d(t) being the control input
sampling error given by

1
() = f N ey, &) — aly. D)dy

o (134)
+ [ W0 E05) - . ),

0
for all t € (tj, tj+1),j € N. We design a self-triggering mechanism
to determine the control update times.

Assumption 3. The reflection terms are small enough such that
the following inequality holds:

1
lpgl < —=. (135)
2
Note that Assumption 3 is less restrictive than Assumption 1.
Below we present the details of STC.

Definition 3. Let 7,60, u,wg > 0 be self-trigger parameters.
The set of event times I = ({tj}jey under STC, which forms an
increasing sequence satisfying lim;_, o tj = +00, is defined by the
following rule:

t =to + 7,
1=t +7
. ) (136)
N m<1 (0* + nwo(Uj — Uj_1) )
o*+n gelo*+n)r (H(a[th ,B[tj]) + e)

for j € N, where v > 0 is the MDT to be set, ¢ > 0, Uj,j € N
given by (129) is the control input updated at t = t;,

s
0" =2¢’e", (137)
H(a[t], BIt])
1 2
1 i px (138)
= 3g/ (—az(x, e 1 + L g2x, t)et2 )dx,
0 VM A2
with
PR
0= 4max{xl||Na||2ex‘§ , ;§||Nﬂ||2}. (139)

In (139), N* and N# are given by (42), (43). Further, in (136),
(138), a[t], B[t] are given by

alx, t) =u(x, t) — /X K" (x, y)u(y, t)dy
0 (140)

X
- f K" (x, y)u(y, t)dy,
0

B(x. 1) =v(x, £) — f K™ (x, y)u(y, t)dy
0 (141)

X
- / K™ (x, y)o(y, t)dy,
0

where K", K", K", K" are the backstepping gain kernels de-
fined in the triangular domain 0 < y < x < 1. The readers are
referred to Vazquez et al. (2011) for details on these gain kernels.

Remark 7. CETC in Definition 1 continuously monitors a trig-
gering function to detect events, whereas PETC in Definition
2, monitors a triggering function only periodically. Due to the



B. Rathnayake and M. Diagne

involvement of the dynamic variable m(t) satisfying (46), (47),
in both CETC and PETC triggering functions, both schemes even
in the full-state feedback case require continuous measurements
from the plant in order to compute and evolve the dynamic
variable m(t). In contrast, STC in Definition 3 requires neither
continuous monitoring of a triggering function nor continuous
measurements from the plant. At each event time, the STC trig-
gering rule (136) computes the next event time using only the
measurements obtained at the current event and the immediate
previous event. In this sense, we refer to the STC design as relying
solely on event-triggered measurements, in contrast to CETC and
PETC, which rely on continuous measurements.

Assumption 4 (Self-trigger Parameter Selection). The parameters
n,wp > 0 are free parameters. Subject to Assumption 3, the
parameter i > 0 is chosen such that

A 1
0<p< 212 1 ——). (142)
A+ Ag 2p%q?
Furthermore, the parameter 6 > 0 is chosen as
0= azwg + ajwo + ap, (143)
where a;, a; > 0, and
s
ao = 2Cq%e’s + 2. (144)
a;
Here,
g0 = 42 (NP(1))°, (145)

where NP(y) is given in (43), and C > 0 is chosen to satisfy
i
eM &3
1 1 — + K3 ),

1 - 22 (Frt5s) \@
1 (max{el, &lr
M ap
for some constants «1, k3, k3 > 0 with r given by (53). Moreover,

C>max{
(146)

+ max{x, Kz}r) }

1

e = 4A§/ (N*(y))” dy, (147)
0
1

£y = 402 / (NP (y))® dy, (148)
0

£3 = 4 (MN“(1) — pAaNP(1))°, (149)

where N%(y) is given in (42).

Theorem 3. Consider a set of increasing event times I = {t;}jen With
to = 0, satisfying lim;_, o tj = +-o00, generated by the STC triggering
rule in Definition 3. For every (u(-,0), v(-,0)) e IL*((0, 1); R?),
there exists a unique solution (u,v)’ e C°(R.o;L%((0,1); R?))
to the system (1)-(4), (129). Choose the self-trigger parameters
n,0, 1, wg > 0 as outlined in Assumption 4 and the MDT T > 0O
as

w1
T = / %ds, (150)
wo asc + a1S + ap
where a;,a; > 0,w; > wg > 0, and ag > 0 is chosen as
(144). Then, under the STC triggering rule in Definition 3, the closed-
loop system (1)-(4), (129) is globally exponentially stable. More
specifically, the following estimate holds:

*
Uste ¢

P(t) < Mgce™ 2 2(0), (151)

forall t > 0, where @(t) = |u[t]|| + ||v[t]|l, for some constants
Mste, v > 0.
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5.1. Proof of Theorem 3

5.1.1. Preliminaries
Before proceeding to the proof of Theorem 3, we provide
several necessary auxiliary results below in Lemmas 6 and 7.

Lemma 6. Consider a set of increasing event times I = {tj}jen With
to = 0, satisfying lim;_, o tj = 400, generated by the STC triggering
rule in Definition 3. Then, under Assumption 3, if the self-trigger
parameter u > 0 is chosen as in (142), the control input sampling
error d(t), given by (134), satisfies the following estimate for all
t €[t 1), jeN:

d’(t) < H(alt], Blg1)e ),

where H(-, -) is given by (138), (139), and ¢* > 0 is given by (137),
(139).

(152)

The proof follows similar steps to that of Lemma 6 of Zhang
et al. (2025).

Lemma 7. Consider a set of increasing event times I = {tj}jen With
to = 0, satisfying lim;_, o tj = 400, generated by the STC triggering
rule in Definition 3. Furthermore, consider a dynamic variable m(t)
that satisfies

m(t) = — nm(t) + 1 lleft]* + k2| BIENI® + k3e(1, 1), (153)
forallt e (t,t;+71)jeN, and

o o , ,

m(t) = — nm(t) — 0d*(t) + k1 |le[t]]* + w2l BLET I (154)

+ K30%(1, 0),

forallt € (4§ + v,t41), j € N, with m(ty) = m(0) = 0,
m((ti+17)7) = m(tj+7) forany t > 0, and m(t;) for j € N. defined
as m(t;) = wo(Uj — Uj_1)?, where U;, j € N, is the control input
updated at t = t; as given by (129). Assume that n, 0, k1, k2, k3 > 0.
In (154), d(t) is defined by (134). If the self-trigger parameter . > 0
is chosen according to (142), then it holds that m(t) > 0 for all
t > 0.

Proof. Considering (153), we obtain that

t

mie) =" Vme) + [ e (walatl?
]

155

+ K2 |BLENIP + es0(1,6) ) dé (153)

e 1 Dm(y),

forall t € (t, t; + 1, j € N. If m(t;) is chosen m(t;) > 0, it follows
that m(t) > O forall t € (t;, t; + 7], j e N.

Now consider the time period when t € (tj + 7, tj1),j € Noo.
Recalling (152) from Lemma 6 and considering (154), we obtain
that

m(t) = —nm(t) — OH (alt], BlE1)e ), (156)
from which it follows that
m(t) > m(t; + t)e” "4

(157)

: 1)ec’t
_ OH(elg]. ple e—na—q—r)( gt Hnit—4-1) _ 1 )’
" +n

forall t € [tj + 7, tjy1),j € Nso. Then, noting from (155) that
m(tj + ) > e~""m(t;), we obtain

m(t) > m(t;)e """ e )
_ OH(algl BlGl)e”™
o*+n

(158)

( ple™+nt—t—7) _

1),
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forall t € [tj 4 7, tj11),j € N5o. Then, it directly follows that

m(t) > e~ "5 { m(t;)e""

_ OH(alyl. Blg1)e (159)

( el@* Mt —t-7) _ 1 )}
o+
forall t € [j+7, tj11),j € N.o. Then, recalling that m(t;) is chosen

asm(t;) = wo(Uj—Uj_1)2 for j € N.o and that events are triggered
according to (136), we have that

a)o(Uj — Uj,1)26
H(alt], BIG]) +€

forall t € [tj + 7, tj+1),j € N.o. Therefore, we can conclude that
m(t) >0 forall t > 0. O

m(t) > e ") (160)

5.1.2. Main proof

The well-posedness in the sense of Theorem 3 is obtained
by iteratively applying the results of Proposition 1 in between
events.

Let the initial conditions of m(t) governed by (153), (154) be
chosen as

m(tp) = m(0) =0, (161)
m((tj+1)7) =m(t+ 1), forjeN, (162)
m(t) = wo(U; — Uj1)’ (163)

= wod?(t]), forj € Noy,

where d(t) is given by (134). Then, it follows from Lemma 7 that
m(t) satisfies m(t) > 0 for all t > 0.
Let us consider the following Lyapunov candidate

Wy(t) = Wi(t) + F(£)d*(t) + m(t), (164)

where f(t) satisfies (68), d(t) is given by (134), m(t) satisfies (153),
(154), and Wq(t) is given by

1
C _bx D nx
/ —a?(x, t)e b —ﬂz(x,t)eﬁz dx,
0 \ A A2

with («, B) satisfying (130)-(133), u > 0 chosen as in (142),
C > 0 chosen as in (146), and D = Cq?. Recall from Lemma 3
that f(t) > 0 for all t > 0 if the MDT t > 0 is chosen as (150).

Then, we can follow a procedure very similar to the one
presented in the proof of Theorem 1, with the differences outlined
in the proof of Theorem 2, to show that

Wi (t) (165)

Wi(t) < e % Wy (0), (166)
for all t > 0, where

UG = mMin{vge, a1, n}, (167)
with

max{eq, &a}r  max{ki, ka}r
Uste := U — - > (168)
Ca, C

from which it follows the GES of the closed-loop system satisfying
(151). This completes the proof of Theorem 3. O

6. Numerical simulations

We consider the system (1)-(4) with plant parameters A; = 1,
Az =1, c1(x) = 1, and c3(x) = 1.5 for all x € (0, 1), and ¢ = 0.5.
We select p = 0 to satisfy Assumption 1. The initial conditions are
selected as u®(x) = qu°(x), with v°(x) = 10(1 — x). For both CETC
and PETC, we consider the observer-based problem, where the
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Fig. 3. Evolution of [?> norms of states with no control (open-loop).

S oL i bl i

Fig. 4. (a) Dwell-times under CETC and PETC. (b) CETC and PETC inputs.

initial conditions for the observer are chosen as #1°(x) = 1.5u%(x)
and 9°(x) = 1.5v°(x) for all x € (0, 1). Note that the chosen plant
parameters satisfy the condition (6), and hence, the open-loop
system is unstable. In Fig. 3, we show the evolution of the L?> norm
of the states of the open-loop system, where it is evident that the
system is unstable.

6.1. CETC and PETC

The parameters for the CETC and PETC triggering mechanisms
are chosen as follows: The parameters «;'s, 1, a,, wg, w1 are cho-
senas k; = 1,i = 1,2,3,4,n = 1l,a0 = 1,wp = 1, and
w1 = 10. It can be shown using (50)-(67) that g = 6.3281, &1 =
0.7302, e, = 1.7823, g3 = 2.8125, ¢4 = 20.3216. The parameter
1 is chosen as = 1 such that (51) is satisfied, § < u is chosen
as § = 0.5, and C > 0 is chosen as C = 22.3581 such that (52)
is satisfied. Then, using (49), it is calculated that ay = 51.9098,
and a; is chosen as a; = 2,/apa; = 14.4097. Using (48), 0 is
calculated to be 6 67.3195. The computed MDT is 0.0640.
Thus, we use At 0.0001 to time discretize the plant and
observer dynamics. Following (106), we choose h = 0.0032 as
the sampling period for the PETC approach. Space discretization
is done using a step size of Ax = 0.005.

In Figs. 4 and 5, we present results for both observer-based
CETC and PETC. Fig. 4(a) illustrates the dwell-times, while Fig. 4(b)
shows the CETC and PETC inputs. Fig. 5(a) depicts the evolution
of the I? norms under CETC and PETC, which closely follow each
other. Finally, Fig. 5(b) shows the evolution of the [?> norms of
the observer error under CETC and PETC, where the two trajecto-
ries are identical because the observer error system (13)-(16) is
independent of the control input.
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Fig. 5. (a) L> norms of states under CETC and PETC. (b) L?> norms of observer
errors under CETC and PETC.
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Fig. 6. Results under STC. (a) tj;1 — tj — 7. (b) Control input. (c) I? norm of
states.

6.2. STC

The parameters for the STC triggering mechanism are chosen
as follows: The parameters «;’s, 1, a2, wg, w1 are chosen as k; =
1,i = 1,2,3,n = 1,ay 1, wo 1, and w; 10. It
can be shown using (145), (147)-(149) that &g = 5.0625,¢&; =
0.5841, e, = 1.4258, 53 = 2.2500. The parameter u is chosen
as 4 = 1 such that (142) is satisfied, and C > 0 is chosen
as C = 9.8032 such that (146) is satisfied. Then, using (144),
it is calculated that ay = 18.3865, and a; is chosen as a; =
2./apa; = 8.5759. Using (143), 6 is calculated to be 6 = 27.9624.
The computed MDT is 0.1191. Thus, we use At = 0.0001 to time
discretize the plant dynamics. Space discretization is done using
a step size of Ax = 0.005.

In Fig. 6, we present results for full-state feedback STC. Fig.
6(a) illustrates the value of tj;1 — t; — © satisfying (136), while
Fig. 6(b) shows the STC inputs. Although the events are triggered
aperiodically, due to the conservativeness of STC — stemming
from not monitoring any triggering conditions and relying solely
on event-triggered measurements — the events appear to be
almost periodic, with a period of t. Fig. 6(c) depicts the evolution
of the I? norms of states under STC.

7. Conclusions

In this paper, we have introduced novel dynamic event-
triggered control (ETC) mechanisms — continuous-time event-
triggered control (CETC), periodic event-triggered control (PETC),
and self-triggered control (STC) — for 2 x 2 linear hyperbolic PDEs
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using PDE backstepping. Our designs achieve global exponential
stability (GES) under ETC, marking a significant advancement over
previous works based on PDE backstepping with dynamic event-
triggering, which have only established exponential convergence.
The CETC design introduces a switching dynamic variable and en-
forces a minimal dwell-time between events, ensuring GES while
requiring continuous monitoring of a triggering condition. The
PETC approach overcomes the need for continuous monitoring by
periodically checking an appropriate triggering condition, while
still retaining the GES property. The STC design, in addition to
not requiring any monitoring of a triggering condition, further ad-
vances the state of the art by eliminating the need for continuous
measurements in triggering, while still delivering GES. Though
conservative, it computes the next event time at the current event
using only event-triggered full-state measurements, a feature
not previously achieved in ETC with PDE backstepping, which
required continuous measurements for the triggering mechanism.
One possible direction to mitigate the conservatism of STC is
to integrate the performance-barrier ETC concept, as explored
in Rathnayake et al. (2025) and Zhang et al. (2025).
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