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 a b s t r a c t

This paper introduces novel dynamic event-triggered control (ETC) mechanisms for 2 × 2 linear 
hyperbolic PDEs in three configurations: continuous-time event-triggered control (CETC), periodic 
event-triggered control (PETC), and self-triggered control (STC). These mechanisms ensure global 
exponential stability (GES) under ETC using PDE backstepping, with stability estimates provided in 
the spatial L2 norm of the states. The proposed CETC and PETC designs are observer-based and 
require continuous boundary measurements collocated with the actuation. In contrast, the STC design 
requires full-state measurements; however, unlike CETC and PETC, it does not require continuous 
measurements for the triggering mechanism—only measurements taken at event times. In the CETC 
design, a lower bound on the time between two consecutive events is enforced, and a dynamic variable 
with appropriately designed switching dynamics is introduced. By employing a novel Lyapunov 
functional, GES of the closed-loop system is established under zero-order hold implementation of 
the backstepping control between events. Events are triggered when the dynamic variable crosses 
zero from the positive side, after which it is immediately reset to an appropriate nonnegative value. 
Detecting events, therefore, necessitates continuous monitoring of this dynamic variable. To address 
this limitation, PETC and STC strategies are proposed. The PETC design identifies a suitable triggering 
condition that requires only periodic checks and derives an upper bound on the allowable sampling 
period. This PETC approach preserves the GES guaranteed by CETC without requiring continuous 
monitoring of a triggering condition, although it still relies on continuous measurements. Unlike CETC 
and PETC, STC requires neither continuous measurements nor monitoring of a triggering condition. 
Instead, at each event, STC computes the time to the next event — beyond a suitably enforced minimal 
dwell-time — using only measurements taken at events. Despite relying solely on event-triggered 
measurements, STC is capable of guaranteeing GES of the closed-loop system. The well-posedness 
of the closed-loop systems under all three strategies is established. A simulation study is provided to 
illustrate the theoretical results.

© 2025 Published by Elsevier Ltd.
1. Introduction

1.1. State of the art

Event-triggered control (ETC) of PDEs has gained traction due 
to the rise of networked control systems, which require efficient 
use of resources for communication, computation, and actua-
tion. Two classes of event-triggering mechanisms are identified 
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in ETC of PDEs: static event-triggering (Baudouin, Marx, & Tar-
bouriech, 2019; Diagne & Karafyllis, 2021; Espitia, Girard, Marc-
hand, & Prieur, 2016; Espitia, Karafyllis, & Krstic, 2021; Kang, 
Baudouin, & Fridman, 2021; Koga, Demir, & Krstic, 2023; Koudo-
hode, Baudouin, & Tarbouriech, 2022b; Koudohode, Espitia, & 
Krstic, 2024; Rathnayake & Diagne, 2022; Selivanov & Fridman, 
2016) and dynamic event-triggering (Demir, Koga, & Krstic, 2024; 
Espitia, 2020; Espitia, Auriol, Yu, & Krstic, 2022a, 2022b; Es-
pitia, Yu, & Krstic, 2020; Kang, Fridman, Zhang, & Liu, 2023; 
Katz, Fridman, & Selivanov, 2021; Koudohode, Baudouin, & Tar-
bouriech, 2022a; Lhachemi, 2024; Rathnayake & Diagne, 2024a; 
Rathnayake, Diagne, Cortés, & Krstic, 2025; Rathnayake, Diagne, 
Espitia, & Karafyllis, 2022; Rathnayake, Diagne, & Karafyllis, 2022; 
Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023; Zhang, Rath-
nayake, Diagne, & Krstic, 2025; Zhang & Yu, 2024). In static 
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event-triggering, events are triggered based on a static rule, typ-
ically requiring full-state measurements, with a few exceptions, 
such as Espitia et al. (2016), Selivanov and Fridman (2016), where 
the designs can operate with outputs, though not with state 
estimates derived from observers. In contrast, dynamic event-
triggering utilizes a dynamic variable that has user-defined dy-
namics. This method can often be used with either full-state 
measurements or state estimates derived from observers. The 
greater flexibility offered by dynamic event-triggering arises from 
the auxiliary dynamics at the designer’s disposal. Regarding the 
underlying controller, the most common approach is to imple-
ment a pre-designed continuous-time controller in a zero-order 
hold manner between control updates, a strategy known as con-
trol by emulation. PDE backstepping (Krstic & Smyshlyaev, 2008) 
and modal decomposition technique (Triggiani, 1980) are among 
the widely emulated continuous-time control approaches in PDE 
ETC. A key concern in ETC is avoiding Zeno behavior—the oc-
currence of an infinite number of control updates in a finite 
time interval, which leads to infeasible designs. A common way 
to ensure Zeno-freeness is to demonstrate or enforce a positive 
and uniform lower bound on the time between two consecutive 
events, referred to as the minimal dwell-time (MDT).

Previous studies on ETC of parabolic PDEs include works such 
as Demir, Koga, and Krstic (2024), Espitia et al. (2021), Kang 
et al. (2023), Katz et al. (2021), Koga et al. (2023), Koudohode 
et al. (2024), Lhachemi (2024), Rathnayake and Diagne (2022, 
2024a), Rathnayake, Diagne, Espitia, and Karafyllis (2022), Rath-
nayake, Diagne, and Karafyllis (2022), Wang and Krstic (2023).
Full-state feedback static event-triggering mechanisms for
reaction–diffusion (RD) PDEs using PDE backstepping are pro-
posed in Espitia et al. (2021), Koudohode et al. (2024), while 
dynamic event-triggering mechanisms are found in Rathnayake, 
Diagne, Espitia, and Karafyllis (2022), Rathnayake, Diagne, and 
Karafyllis (2022), Wang and Krstic (2023), with Wang and Krstic 
(2023) featuring a full-state feedback adaptive design and Rath-
nayake, Diagne, Espitia, and Karafyllis (2022), Rathnayake, Di-
agne, and Karafyllis (2022) being observer-based. Observer-based 
modal decomposition methods for dynamic ETC of RD PDEs are 
detailed in Katz et al. (2021), Lhachemi (2024). For parabolic PDEs 
with moving boundaries, static event-triggering using PDE back-
stepping is discussed in Koga et al. (2023), Rathnayake and Di-
agne (2022), requiring full-state measurements. Dynamic event-
triggering in the same context is presented in Demir, Koga, 
and Krstic (2024), Rathnayake and Diagne (2024a), with Demir, 
Koga, and Krstic (2024) proposing a full-state feedback design 
and Rathnayake and Diagne (2024a) an observer-based design. 
In Kang et al. (2023), the authors introduce a full-state feedback 
dynamic ETC method for nonlinear RD PDEs.

Previous works on ETC of hyperbolic PDEs include Baudouin 
et al. (2019), Diagne and Karafyllis (2021), Espitia (2020), Espitia 
et al. (2022a, 2022b, 2016, 2020), Koudohode et al. (2022b), 
Wang and Krstic (2021, 2022a, 2022b, 2022c), Zhang and Yu 
(2024). Static event-triggering is used in Baudouin et al. (2019), 
Diagne and Karafyllis (2021), Espitia et al. (2016), Koudohode 
et al. (2022b), addressing linear hyperbolic systems (Espitia et al., 
2016), damped wave equations (Baudouin et al., 2019; Koudo-
hode et al., 2022b), and nonlinear hyperbolic PDEs in manu-
facturing (Diagne & Karafyllis, 2021). Output feedback is used 
in Espitia et al. (2016), while full-state feedback is required in the 
others. Dynamic triggering, employed in Espitia (2020), Espitia 
et al. (2022a, 2022b, 2020), Wang and Krstic (2021, 2022a, 2022b, 
2022c), Zhang and Yu (2024), focuses on 2 × 2 linear hyperbolic 
PDEs (Espitia, 2020; Wang & Krstic, 2021, 2022a, 2022b, 2022c) 
and 4 × 4 systems (Espitia et al., 2022a, 2022b; Zhang & Yu, 
2024). All use PDE backstepping, with full-state feedback in Es-
pitia et al. (2020), Wang and Krstic (2022b), Zhang and Yu (2024) 
and observer-based feedback in the others.
2

One key limitation of the discussed ETC approaches is that 
they require continuous monitoring of conditions to detect events.
Therefore, these mechanisms are referred to as continuous-time 
ETC (CETC) methods. As continuous monitoring on digital com-
puters is impractical, two alternative methods have emerged: pe-
riodic event-triggered control (PETC), which periodically checks 
conditions (Demir, Diagne, & Krstic, 2024; Rathnayake & Diagne, 
2023, 2024b; Rathnayake et al., 2025; Selivanov & Fridman, 2016; 
Somathilake, Rathnayake, & Diagne, 2024; Wakaiki & Sano, 2020; 
Zhang et al., 2025), and self-triggered control (STC), which pre-
dicts the next event time at the current event based on system 
states and dynamics (Rathnayake & Diagne, 2024b; Rathnayake 
et al., 2025; Somathilake et al., 2024; Wakaiki & Sano, 2019; 
Zhang et al., 2025). Works such as Selivanov and Fridman (2016), 
Wakaiki and Sano (2020) use periodic static event-triggering with 
full-state measurements for semilinear diffusion PDEs and linear 
infinite-dimensional systems. The full-state feedback STC method 
from Wakaiki and Sano (2019) targets linear infinite-dimensional 
systems. Dynamic periodic event-triggering and self-triggering 
with PDE backstepping are examined in Demir, Diagne, and 
Krstic (2024), Rathnayake and Diagne (2023, 2024b), Rathnayake 
et al. (2025), Somathilake et al. (2024), Zhang et al. (2025). 
These include observer-based PETC and STC approaches for RD 
PDEs (Rathnayake & Diagne, 2024b) and 2 × 2 linear hyper-
bolic PDEs (Somathilake et al., 2024), full-state feedback and 
observer-based PETC approaches for parabolic PDEs with moving 
boundaries (Demir, Diagne, & Krstic, 2024; Rathnayake & Diagne, 
2023), and full-state feedback PETC and STC using performance 
barriers for sparser event-triggering in RD PDEs (Rathnayake 
et al., 2025) and 2 × 2 linear hyperbolic PDEs (Zhang et al., 2025).

1.2. Contributions

In this paper, we propose novel dynamic event-triggering 
mechanisms for 2 × 2 linear hyperbolic PDEs with PDE back-
stepping in three configurations: CETC, PETC, and STC. These
mechanisms achieve global exponential stability (GES) under event-
triggered PDE backstepping control—an outcome that, to the 
best of our knowledge, has not been previously realized using 
dynamic event-triggering. Previous works, such as Demir, Diagne, 
and Krstic (2024), Demir, Koga, and Krstic (2024), Espitia (2020), 
Espitia et al. (2022a, 2022b, 2020), Rathnayake and Diagne (2023, 
2024a, 2024b), Rathnayake et al. (2025), Rathnayake, Diagne, 
Espitia, and Karafyllis (2022), Rathnayake, Diagne, and Karafyllis 
(2022), Somathilake et al. (2024), Wang and Krstic (2021, 2022a, 
2022b, 2022c, 2023), Zhang et al. (2025), Zhang and Yu (2024), 
that have employed dynamic event-triggering for PDE backstep-
ping, have only established (global) exponential convergence to 
equilibrium.1 In these works, demonstrating the existence of 
an MDT to rule out Zeno behavior while guaranteeing closed-
loop system exponential stability leads to conflicting conditions, 
allowing only the establishment of exponential convergence. In 
addition to the GES guaranteed by our proposed designs, the 
novel STC framework further advances the state of the art by 
requiring only event-triggered measurements for the triggering 
mechanism—a feature not yet achieved by either static (Espitia 
et al., 2021; Koga et al., 2023; Koudohode et al., 2024; Rathnayake 
& Diagne, 2022) or dynamic event-triggering (Demir, Diagne, & 
Krstic, 2024; Demir, Koga, & Krstic, 2024; Espitia, 2020; Espitia 
et al., 2022a, 2022b, 2020; Rathnayake & Diagne, 2023, 2024a, 
2024b; Rathnayake et al., 2025; Rathnayake, Diagne, Espitia, & 

1 Despite the claims of (G)ES in Demir, Koga, and Krstic (2024), Espitia 
(2020), Zhang and Yu (2024), and Theorem 3 of Espitia et al. (2020), these only 
guarantee (global) exponential convergence to the equilibrium.
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Table 1
Position of the current work within the state of the art in dynamic event-triggering for PDE backstepping control.
 PDE type Dynamic ETC with PDE backstepping (G)ES PETC STC Event-triggered 

measurements

 
Parabolic

Demir, Koga, and Krstic (2024), Rathnayake and Diagne (2024a), 
Rathnayake, Diagne, Espitia, and Karafyllis (2022), Rathnayake, 
Diagne, and Karafyllis (2022), Wang and Krstic (2023)

X X X X

 Demir, Diagne, and Krstic (2024), Rathnayake and Diagne (2023) X ✓ X X
 Rathnayake and Diagne (2024b), Rathnayake et al. (2025) X ✓ ✓ X

 
Hyperbolic

Espitia (2020), Espitia et al. (2022a, 2022b, 2020), Wang and 
Krstic (2021, 2022a, 2022b, 2022c), Zhang and Yu (2024)

X X X X

 Somathilake et al. (2024), Zhang et al. (2025) X ✓ ✓ X
 This work GES ✓ ✓ ✓ ✓
Table 2
A comparison of the event-triggering mechanisms proposed in this work.
 Observer- Cont. check of trig. Event-triggered 
 based Cond. Not Required Meas. only  
 CETC ✓ X X  
 PETC ✓ ✓ X  
 STC X ✓ ✓  

Karafyllis, 2022; Rathnayake, Diagne, & Karafyllis, 2022; Somathi-
lake et al., 2024; Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023; 
Zhang et al., 2025; Zhang & Yu, 2024) strategies for PDE back-
stepping control, all of which require continuous measurements. 
Table  1 illustrates how this work fits within the current state of 
the art in dynamic event-triggering for PDE backstepping control.

Our CETC and PETC designs are observer-based, requiring 
continuous but only boundary measurements collocated with 
the actuation. Our STC design requires full-state measurements; 
however, unlike CETC and PETC, it does not require continuous 
measurements for the triggering mechanism, only measurements 
taken at events generated by the self-triggering mechanism. Both 
PETC and STC eliminate the drawback of CETC, which requires 
continuous monitoring of a triggering condition to detect events. 
PETC addresses this by checking an appropriate triggering condi-
tion periodically, while STC computes the next event time at the 
current event time using event-triggered measurements. Table  2 
presents a qualitative comparison of the designs proposed in this 
work.

The design of the CETC approach involves explicitly enforcing 
a suitable lower bound, τ > 0, on the time between two events, 
thereby ruling out Zeno behavior. This contrasts with (Demir, 
Koga, & Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b, 
2020; Rathnayake & Diagne, 2024a; Rathnayake et al., 2025; Rath-
nayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake, Diagne, & 
Karafyllis, 2022; Wang & Krstic, 2021, 2022a, 2022b, 2022c, 2023; 
Zhang et al., 2025; Zhang & Yu, 2024), where the existence of a 
minimum dwell-time is not explicitly evident from the triggering 
condition and requires proof of its existence. We introduce a 
switching dynamic variable that remains non-negative between 
the last event at time tj and tj + τ , for j ∈ N, and is allowed to 
decrease until the next event, which occurs at time tj+1, j ∈ N at 
the zero-crossing of the dynamic variable. The concept of time 
regularization to enforce an MDT and the use of a switching 
dynamic variable is not entirely novel in PDE ETC. For example, 
see Kang et al. (2023), Katz et al. (2021), where the authors 
propose dynamic ETC strategies for parabolic PDEs, using argu-
ments involving linear matrix inequalities. However, our work is 
primarily inspired by Dolk and Heemels (2017), Dolk, Ploeg, and 
Heemels (2017), Dolk, Tesi, De Persis, and Heemels (2017), where 
dynamic ETC approaches are developed for networked control 
systems described by ordinary differential equations, employing 
switching dynamic variables. Drawing from these ideas, we con-
struct a novel Lyapunov candidate for 2 × 2 linear hyperbolic 
3

PDEs under ETC. This candidate includes the L2 norms of the 
observer and observer error target system states, the switching 
dynamic variable, and a state-independent dynamic reset variable 
that is modulated by the control input sampling error. Through 
a careful choice of the switching dynamics, its initial conditions 
at each event, and an appropriate MDT τ > 0 derived from 
the state-independent dynamic reset variable, we establish that 
the Lyapunov function remains dissipative along the closed-loop 
system dynamics despite the event-triggered application of the 
control input with zero-order hold. This allows us to establish, for 
the first time, GES under PDE backstepping with dynamic event-
triggering. The zero-crossing of the switching dynamic variable 
must be monitored continuously in time to detect events, hence 
the name CETC. The proposed PETC and STC designs overcome 
this drawback.

The design of the PETC approach involves: (1) identifying 
an appropriate triggering condition that requires only periodic 
checks to determine if control updates are necessary, and (2) de-
termining an appropriate upper bound for the allowable sampling 
period for periodic checks. Building on the ideas from (Rath-
nayake & Diagne, 2024b), a novel event-triggering function for 
PETC is derived by finding an upper bound for the underly-
ing continuous-time event-triggering function. Its derivation ne-
cessitates establishing a sufficiently small upper bound for the 
sampling period of the triggering mechanism. Despite the trig-
gering function being evaluated only periodically, as opposed to 
the continuous monitoring required in CETC, the PETC mecha-
nism preserves the GES guaranteed by CETC. Since the triggering 
condition is checked periodically, Zeno behavior is inherently 
absent.

Unlike the proposed CETC and PETC mechanisms, the proposed 
STC does not require monitoring any triggering conditions. The 
STC triggering mechanism is designed by (1) enforcing an MDT 
τ > 0, similar to CETC, and (2) identifying an appropriate 
waiting time until the next event at time tj+1, starting from tj +

τ  for j ∈ N, using event-triggered measurements only. This 
waiting time is derived by utilizing suitable upper bounds on 
the system states between events and employing a switching 
dynamic variable similar to that in CETC. GES under STC is then 
established using Lyapunov arguments akin to those in CETC. 
In contrast to CETC, PETC, and previous ETC designs employing 
static event-triggering (Espitia et al., 2021; Koga et al., 2023; 
Koudohode et al., 2024; Rathnayake & Diagne, 2022) or dynamic 
event-triggering (Demir, Diagne, & Krstic, 2024; Demir, Koga, & 
Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b, 2020; 
Rathnayake & Diagne, 2023, 2024a, 2024b; Rathnayake et al., 
2025; Rathnayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake, 
Diagne, & Karafyllis, 2022; Somathilake et al., 2024; Wang & 
Krstic, 2021, 2022a, 2022b, 2022c, 2023; Zhang et al., 2025; Zhang 
& Yu, 2024), all of which require continuous measurements for 
their triggering mechanisms (see Table  1), the proposed STC de-
sign relies solely on event-triggered measurements — specifically, 
the measurements at the current event time tj and the previous 
event time t  — to determine the next event time t , j ∈ N.
j−1 j+1
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The well-posedness of the closed-loop system under all three 
ETC approaches is obtained.

Contributions Summary

1. The design of a novel observer-based CETC for 2 × 2 
linear hyperbolic PDEs that guarantees GES. To the best 
of our knowledge, this is the first approach to achieve 
GES for hyperbolic PDEs under dynamic ETC with PDE 
backstepping. Previous works such as Demir, Koga, and 
Krstic (2024), Espitia (2020), Espitia et al. (2022a, 2022b, 
2020), Rathnayake and Diagne (2024a), Rathnayake et al. 
(2025), Rathnayake, Diagne, Espitia, and Karafyllis (2022), 
Rathnayake, Diagne, and Karafyllis (2022), Wang and Krstic 
(2021, 2022a, 2022b, 2022c, 2023), Zhang et al. (2025), 
Zhang and Yu (2024), which employ PDE backstepping 
with dynamic event-triggering, have only established
(global) exponential convergence.

2. The design of a novel observer-based PETC for 2 × 2 lin-
ear hyperbolic PDEs that guarantees GES. PETC eliminates 
the need for continuous checking of a triggering condi-
tion required in CETC, requiring only periodic checks of a 
suitable triggering condition. This is the first PETC design 
with PDE backstepping that guarantees GES. Previous PETC 
approaches using PDE backstepping such as Demir, Diagne, 
and Krstic (2024), Rathnayake and Diagne (2023, 2024b), 
Rathnayake et al. (2025), Somathilake et al. (2024), Zhang 
et al. (2025) have only established (global) exponential 
convergence.

3. The design of a novel full-state feedback STC for 2 × 2 lin-
ear hyperbolic PDEs that guarantees GES and requires only 
event-triggered measurements for the triggering mecha-
nism. STC eliminates the need for continuous monitoring 
of a triggering function required in CETC, and instead cal-
culates the next event time at each event using event-
triggered measurements. This is the first STC design with 
PDE backstepping that guarantees GES. Previous STC ap-
proaches using PDE backstepping, such as Rathnayake and 
Diagne (2024b), Rathnayake et al. (2025), Somathilake et al. 
(2024), Zhang et al. (2025), have only established (global) 
exponential convergence. Furthermore, this is the first ETC 
design with PDE backstepping that requires only event-
triggered measurements for the triggering mechanism. Pre-
vious works on ETC with PDE backstepping using either 
static (Espitia et al., 2021; Koga et al., 2023; Koudohode 
et al., 2024; Rathnayake & Diagne, 2022) or dynamic event-
triggering (Demir, Diagne, & Krstic, 2024; Demir, Koga, & 
Krstic, 2024; Espitia, 2020; Espitia et al., 2022a, 2022b, 
2020; Rathnayake & Diagne, 2023, 2024a, 2024b; Rath-
nayake et al., 2025; Rathnayake, Diagne, Espitia, & Karafyl-
lis, 2022; Rathnayake, Diagne, & Karafyllis, 2022; Somathi-
lake et al., 2024; Wang & Krstic, 2021, 2022a, 2022b, 2022c, 
2023; Zhang et al., 2025; Zhang & Yu, 2024) require con-
tinuous measurements for the triggering mechanism.

1.3. Organization

The paper is organized as follows. In Section 2, we present 
the continuous-time control and its emulation. Sections 3, 4, 
and 5 present the CETC, PETC, and STC designs, respectively. A 
simulation study is conducted in Section 6 to illustrate the results, 
and conclusions are provided in Section 7.

1.4. Notations

Let R be the set of real numbers, R>0 be the set of positive 
real numbers, and R  be the set of nonnegative real numbers 
≥0

4

including zero. Let N be the set of natural numbers including 0, 
and let N>0 be the set of natural numbers greater than 0. By 
L2(0, 1), we denote the equivalence class of Lebesgue measurable 
functions f : [0, 1] → R such that ∥f ∥L2((0,1);R) = (

∫ 1
0 |f (x)|2)1/2 <

∞. Define C0(I; L2((0, 1);R)) as the space of continuous functions 
u(·, t) for an interval I ⊆ R>0 such that I ∋ t → u(·, t) ∈

L2((0, 1);R).

2. Preliminaries and problem formulation

Consider the following 2 × 2 linear hyperbolic PDE system in 
the canonical form:

ut (x, t) + λ1ux(x, t) = c1(x)v(x, t), ∀x ∈ (0, 1), (1)

vt (x, t) − λ2vx(x, t) = c2(x)u(x, t), ∀x ∈ (0, 1), (2)

with boundary conditions

u(0, t) = qv(0, t), (3)

v(1, t) = ρu(1, t) + Uj. (4)

for all t ∈ (tj, tj+1), j ∈ N. The set {tj}j∈N represents the se-
quence of control update times, which will later be characterized 
under continuous-time event-triggered control (CETC), periodic 
event-triggered control (PETC), and self-triggered control (STC) 
strategies. The control input Uj remains constant for all t ∈

[tj, tj+1), where j ∈ N. The parameters λ1, λ2 > 0 denote the 
transport speeds, while the functions c1(x) and c2(x) are such that 
c1, c2 ∈ C0((0, 1);R). The parameter q ̸= 0 represents the distal 
reflection term, and ρ is the proximal reflection term. The initial 
conditions are given by (u0, v0)T ∈ L2((0, 1);R2).

We make the following assumption on the reflection terms. 

Assumption 1. The reflection terms are small enough such that 
the following inequality holds: 

|ρq| <
1

√
3
. (5)

Remark 1. By performing a spectrum analysis similar to Yu and 
Krstic (2022) for the system (1)–(4), with c1(x) ≡ c1 and c2(x) ≡

c2, and with Uj = 0 (open-loop system), one can show that a 
sufficient condition for instability is 

4c1c2 > (λ1 + λ2)2ξ 21 , (6)

where ξ1 > 0 is the smallest admissible spatial frequency de-
termined by the boundary conditions. Assumption  1 imposes 
dissipative boundary conditions, which do not contribute to insta-
bility. However, in the presence of in-domain couplings between 
the two transport PDEs (1) and (2), the condition (6) ensures 
that at least one eigenvalue has a positive real part, leading to 
instability.

In Vazquez, Krstic, and Coron (2011), among other results, the 
authors develop an observer for the system (1)–(4) using u(1, t)
as the available boundary measurement, resulting in a collocated 
sensing and actuation setup. This design is presented below. The 
observer states (û, v̂) satisfy for all x ∈ (0, 1)

ût (x, t) + λ1ûx(x, t) = c1(x)v̂(x, t) + p1(x)ũ(1, t), (7)

v̂t (x, t) − λ2v̂x(x, t) = c2(x)û(x, t) + p2(x)ũ(1, t), (8)

with boundary conditions

û(0, t) = qv̂(0, t), (9)

v̂(1, t) = ρu(1, t) + Uj, (10)
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for all t ∈ (tj, tj+1), j ∈ N with (û0, v̂0)T ∈ L2((0, 1);R2), where

ũ := u − û, (11)

ṽ := v − v̂, (12)

are the observer errors satisfying
ũt (x, t) + λ1ũx(x, t) = c1(x)ṽ(x, t) − p1(x)ũ(1, t), (13)

ṽt (x, t) − λ2ṽx(x, t) = c2(x)ũ(x, t) − p2(x)ũ(1, t), (14)

for all x ∈ (0, 1), with boundary conditions
ũ(0, t) = qṽ(0, t), (15)

ṽ(1, t) = 0, (16)

for all t > 0. The terms p1(x) and p2(x) are the observer gains 
satisfying

p1(x) = − λ1Pαα(x, 1), (17)

p2(x) = − λ1Pβα(x, 1). (18)

The gains p1(x), p2(x) are determined using the PDE backstepping 
technique equipped with the Volterra transformations

ũ(x, t) =α̃(x, t) −

∫ 1

x
Pαα(x, y)α̃(y, t)dy

−

∫ 1

x
Pαβ (x, y)β̃(y, t)dy, (19)

ṽ(x, t) =β̃(x, t) −

∫ 1

x
Pβα(x, y)α̃(y, t)dy

−

∫ 1

x
Pββ (x, y)β̃(y, t)dy, (20)

defined in the triangular domain 0 ≤ x ≤ y ≤ 1. The readers 
are referred to Vazquez et al. (2011) for details on the kernels 
Pαα, Pαβ , Pβα, Pββ . Under the transformations (19), (20), and the 
observer gains (17), (18), the observer error system (13)–(16) gets 
transformed into the following observer error target system
α̃t (x, t) + λ1α̃x(x, t) = 0,∀x ∈ (0, 1), (21)

β̃t (x, t) − λ2β̃x(x, t) = 0,∀x ∈ (0, 1), (22)

α̃(0, t) = qβ̃(0, t), (23)

β̃(1, t) = 0, (24)

for all t > 0. The inverse transformations of (19), (20) take the 
form

α̃(x, t) =ũ(x, t) +

∫ 1

x
Q uu(x, y)ũ(y, t)dy

+

∫ 1

x
Q uv(x, y)ṽ(y, t)dy, (25)

β̃(x, t) =ṽ(x, t) +

∫ 1

x
Q vu(x, y)ũ(y, t)dy

+

∫ 1

x
Q vv(x, y)ṽ(y, t)dy, (26)

where the inverse kernels Q uu,Q uv,Q vu,Q vv are defined in the 
domain 0 ≤ x ≤ y ≤ 1. The readers are referred to Vazquez 
et al. (2011) for details on the kernels. The well-posedness of 
the closed-loop system (1)–(4), (7)–(10) with piecewise con-
stant inputs between two sampling instants is established in the 
following proposition.

Proposition 1 (Espitia, 2020). For any Uj ∈ R, (u(·, tj), v(·, tj))T ∈

L2((0, 1);R2), and (û(·, tj), v̂(·, tj))T ∈ L2((0, 1);R2), there exist 
unique solutions (u, v)T ∈ C0([t , t ]; L2((0, 1);
j j+1

5

R2)) and (û, v̂)T ∈ C0([tj, tj+1]; L2((0, 1);R2)) to the systems (1)–(4) 
and (7)–(10), respectively, between two time instants tj and tj+1.

Let us consider the following sampled-data boundary control 
law 

U(tj) := Uj =

∫ 1

0
Nu(y)û(y, tj)dy +

∫ 1

0
Nv(y)v̂(y, tj)dy, (27)

for all t ∈ [tj, tj+1), j ∈ N, where Nu and Nv are the control gains

Nu(y) =K vu(1, y) − ρK uu(1, y), (28)

Nv(y) =K vv(1, y) − ρK uv(1, y). (29)

The readers are referred to Vazquez et al. (2011) for details on the 
gain kernels K uu, K uv, K vu, K vv defined in the triangular domain 
0 ≤ y ≤ x ≤ 1. The control gains Nu and Nv are derived 
via the PDE backstepping technique equipped with the Volterra 
transformations

α̂(x, t) =û(x, t) −

∫ x

0
K uu(x, y)û(y, t)dy

−

∫ x

0
K uv(x, y)v̂(y, t)dy, (30)

β̂(x, t) =v̂(x, t) −

∫ x

0
K vu(x, y)û(y, t)dy

−

∫ x

0
K vv(x, y)v̂(y, t)dy, (31)

defined in the domain 0 ≤ y ≤ x ≤ 1. Subject to the 
transformations (30), (31), and the control input (27)–(29), the 
observer (7)–(10) gets transformed into the following observer 
target system
α̂t (x, t) + λ1α̂x(x, t) = p̄1(x)α̃(1, t), ∀x ∈ (0, 1), (32)

β̂t (x, t) − λ2β̂x(x, t) = p̄2(x)α̃(1, t), ∀x ∈ (0, 1), (33)

α̂(0, t) = qβ̂(0, t), (34)

β̂(1, t) = ρα̃(1, t) + ρα̂(1, t) + d(t), (35)

for all t ∈ (tj, tj+1), j ∈ N, where 

p̄1(x) =p1(x) −

∫ x

0
K uu(x, y)p1(y)dy

−

∫ x

0
K uv(x, y)p2(y)dy,

(36)

p̄2(x) =p2(x) −

∫ x

0
K vu(x, y)p1(y)dy

−

∫ x

0
K vv(x, y)p2(y)dy,

(37)

for all x ∈ (0, 1), and d(t) is the control input sampling error 
defined as 

d(t) := U(tj) − U(t) =

∫ 1

0
Nu(y)

(
û(y, tj) − û(y, t)

)
dy

+

∫ 1

0
Nv(y)

(
v̂(y, tj) − v̂(y, t)

)
dy,

(38)

for all t ∈ (tj, tj+1), j ∈ N.
The inverse transformations of (30), (31) take the form

û(x, t) =α̂(x, t) +

∫ x

0
Lαα(x, y)α̂(y, t)dy

+

∫ x

0
Lαβ (x, y)β̂(y, t)dy, (39)

v̂(x, t) =β̂(x, t) +

∫ x

Lβα(x, y)α̂(y, t)dy

0
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+

∫ x

0
Lββ (x, y)β̂(y, t)dy, (40)

where the inverse kernels Lαα, Lαβ , Lβα, Lββ are defined in the 
domain 0 ≤ y ≤ x ≤ 1. The readers are referred to Vazquez 
et al. (2011) for details on the inverse kernels.

The control input Uj given by (27) can also be expressed 
in terms of the inverse kernels and target system states (α̂, β̂)
as Espitia (2020) 

U(tj) := Uj =

∫ 1

0
Nα(y)α̂(y, tj)dy +

∫ 1

0
Nβ (y)β̂(y, tj)dy, (41)

for all t ∈ [tj, tj+1), j ∈ N, where Nα and Nβ are given by

Nα(y) =Lβα(1, y) − ρLαα(1, y), (42)

Nβ (y) =Lββ (1, y) − ρLαβ (1, y). (43)

Accordingly, the control input sampling error can be rewritten as 

d(t) =

∫ 1

0
Nα(y)

(
α̂(y, tj) − α̂(y, t)

)
dy

+

∫ 1

0
Nβ (y)

(
β̂(y, tj) − β̂(y, t)

)
dy,

(44)

for all t ∈ (tj, tj+1), j ∈ N. We use Uj given by (41)–(43) and d(t)
given by (44) in the event-triggering mechanisms to follow.

3. Continuous-time event-triggered control (CETC)

In this section, we present an ETC design that prescribes 
control updates only at specific events but requires continu-
ous evaluation of the triggering function to detect these events, 
hence the term continuous-time event-triggering. The triggering 
mechanism involves designing a switching dynamic variable that 
accounts for the effects of control input sampling, thereby pre-
serving the GES of the closed-loop system. The details of the 
design are presented below.

Definition 1.  Let η, θ, κ1, κ2, κ3, κ4 > 0 be event-trigger param-
eters. The set of event times I = {tj}j∈N under CETC, which forms 
an increasing sequence satisfying limj→∞ tj = +∞, is defined by 
the following rule: 
tj+1 = inf

{
t ≥ tj + τ |m(t) < 0

}
, (45)

with t0 = 0, where τ > 0 is the MDT to be specified, and m(t)
evolves according to 
ṁ(t) = − ηm(t) + κ1∥α̂[t]∥2

+ κ2∥β̂[t]∥2

+ κ3α̂
2(1, t) + κ4α̃

2(1, t),
(46)

for all t ∈ (tj, tj + τ ), j ∈ N, and 

ṁ(t) = − ηm(t) − θd2(t) + κ1∥α̂[t]∥2
+ κ2∥β̂[t]∥2

+ κ3α̂
2(1, t) + κ4α̃

2(1, t),
(47)

for all t ∈ (tj + τ , tj+1), j ∈ N, with m(t0) = m(0) = 0, 
m(tj) ≥ 0, j ∈ N>0 to be chosen appropriately at each event time, 
and m

(
(tj + τ )−

)
= m(tj + τ ), j ∈ N. In (46) and (47), α̂[t] and 

β̂[t] are defined in (30) and (31), respectively. In (47), d(t) is given 
in (44). From (11) and (19), it follows that α̃(1, t) = ũ(1, t) =

u(1, t) − û(1, t).

Assumption 2 (Event-trigger Parameter Selection). The parameters 
η, κ1, κ2, κ3, κ4 > 0 are free parameters, and the parameter θ > 0
is chosen as 
θ = a ω2

+ a ω + a , (48)
2 0 1 0 0

6

where a1, a2, ω0 > 0, and 

a0 = 3Cq2e
µ
λ2 +

ε0

a2
. (49)

Here, 

ε0 = 5λ22
(
Nβ (1)

)2
, (50)

where Nβ (y) is given in (43), and subject to Assumption  1, the 
parameter µ is selected such that 

0 < µ <
λ1λ2

λ1 + λ2
ln

(
1

3ρ2q2

)
, (51)

and C > 0 is chosen to satisfy

C > max
{

e
µ
λ1

1 − 3ρ2q2eµ
(

1
λ1

+
1
λ2

)
(
ε3

a2
+ κ3

)
,

1
µ− δ

(
max{ε1, ε2}r

a2
+ max{κ1, κ2}r

)}
, (52)

for some δ > 0 such that δ < µ, and

r =
1

min
{

1
λ1
e−

µ
λ1 ,

q2
λ2

} , (53)

ε1 = 5λ21

∫ 1

0

(
Ṅα(y)

)2
dy, (54)

ε2 = 5λ22

∫ 1

0

(
Ṅβ (y)

)2
dy, (55)

ε3 = 5
(
λ1Nα(1) − ρλ2Nβ (1)

)2
. (56)

Here, Nα(y) is given in (42).

Theorem 1. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0, satisfying limj→∞ tj = +∞, generated by the 
CETC triggering rule in Definition  1. For every (u(·, 0), v(·, 0))T ∈

L2((0, 1);R2), and (û(·, 0), v̂(·, 0))T ∈ L2((0, 1);R2), there exist 
unique solutions (u, v)T ∈ C0(R>0; L2((0, 1);R2)) and (û, v̂)T ∈

C0(R>0; L2((0, 1);R2)) to (1)–(4), (7)–(10), (17), (18), (41)–(43). 
Choose the event-trigger parameters η, θ, κ1, κ2, κ3,
κ4 > 0 as in Assumption  2, and the MDT τ > 0 as 

τ =

∫ ω1

ω0

1
a2s2 + a1s + a0

ds, (57)

for any ω1 > ω0 > 0, a1, a2 > 0, and a0 > 0 given by (49). Further, 
choose the initial conditions of m(t) satisfying (46), (47) as

m(t0) = m(0) = 0, (58)

m
(
(tj + τ )−

)
= m(tj + τ ),  for j ∈ N, (59)

m(tj) = ω0d2(t−j ) = ω0
(
Uj−1 − Uj

)2
,  for j ∈ N>0, (60)

where Uj, j ∈ N given by (41) is the control input updated at 
t = tj. Then, under the CETC triggering rule in Definition  1, the 
closed-loop system (1)–(4), (7)–(10), (17), (18), (41)–(43) is globally 
exponentially stable. More specifically, the following estimate holds: 

Φ(t) ≤ Metce−
υ⋆etc
2 tΦ(0), (61)

for all t > 0, where 

Φ(t) = ∥u[t]∥ + ∥û[t]∥ + ∥v[t]∥ + ∥v̂[t]∥, (62)

for some constants M , υ⋆ > 0.
etc etc
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Fig. 1. A schematic of evolution of m(t). Note that m(t0) = 0 and m(
(tj +τ )−

)
=

m(tj+τ ), j ∈ N, whereas m(tj) ≥ 0, j ∈ N>0 is appropriately chosen at each event 
t = tj .

Remark 2. Using partial fraction expansion, it can be shown that 
the MDT τ > 0 chosen as (57) can be expressed as 

τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1−ω0

a2
(
ω1+

a1
2a2

)(
ω0+

a1
2a2

) , if ∆ = 0,

1
√
∆
ln

(
1 +

√
∆

a2
(ω1−ω0)(

ω1+
a1+

√
∆

2a2

)(
ω0+

a1−
√
∆

2a2

))
, if ∆ > 0,

2
√

−∆

(
tan−1

( 2a2√
−∆

(ω1−ω0)

1−
4a22
∆

(
ω1+

a1
2a2

)(
ω0+

a1
2a2

) ))
, if ∆ < 0,

(63)

where 
∆ := a21 − 4a0a2. (64)

In the following subsection, we complete the proof of Theorem 
1.

3.1. Proof of Theorem  1

3.1.1. Preliminaries
Before proceeding to the proof of Theorem  1, we provide 

several necessary auxiliary results below in Lemmas  1–3.

Lemma 1. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0, satisfying limj→∞ tj = +∞, generated by the CETC 
triggering rule in Definition  1. Then, for the dynamic variable m(t)
governed by (46), (47) with m(0) = 0, m(tj) ≥ 0, j ∈ N>0 to be 
chosen, and m

(
(tj + τ )−

)
= m(tj + τ ), j ∈ N for any τ > 0, it holds 

that m(t) ≥ 0 for all t > 0.

Proof. Let m(t0) = 0 and m(tj), j ∈ N>0 be such that m(tj) ≥ 0. 
Then, we have from (46) that 

m(t) = e−η(t−tj)m(tj) +

∫ t

tj

e−η(t−ξ )
(
κ1∥α̂[ξ ]∥2

+ κ2∥β̂[ξ ]∥2
+ κ3α̂

2(1, ξ ) + κ4α̃
2(1, ξ )

)
dξ ≥ 0,

(65)

for all t ∈ (tj, tj + τ ], j ∈ N. After t = tj + τ , the variable 
m(t) evolves according to (47), and an event would trigger at 
t = tj+1 according to (45) to ensure that m(t) ≥ 0 for all 
t ∈ (tj + τ , tj+1), j ∈ N. Following the same line of reasoning, 
starting with m(t0) = 0, it can be shown that m(t) ≥ 0 for all 
t > 0. □

In Fig.  1, we have shown a schematic of evolution of m(t).

Lemma 2. Consider a set of increasing event times I = {tj}j∈N
with t = 0, satisfying lim t = +∞, generated by the CETC 
0 j→∞ j

7

Fig. 2. A schematic of evolution of the reset function f (t). Note that f (tj) = ω1 , 
f
(
(tj + τ )−

)
= f (tj + τ ) = ω0 , and f (t) = ω0 for all t ∈ [tj + τ , tj+1), j ∈ N.

triggering rule in Definition  1. Then, for d(t) given by (44), it holds 
that

(ḋ(t))2 ≤ε0d2(t) + ε1∥α̂[t]∥2
+ ε2∥β̂[t]∥2

+ ε3α̂
2(1, t) + ε4α̃

2(1, t), (66)

for all t ∈ (tj, tj+1), j ∈ N, where ε0, ε1, ε2, ε3 > 0 are given by 
(50), (54)–(56), respectively, and 

ε4 = 5
(∫ 1

0

(
Nα(y)p̄1(y) + Nβ (y)p̄2(y)

)
dy + ρλ2Nβ (1)

)2

. (67)

Here, Nα(y), p̄1(y), and p̄2(y) are given in (42), (17), and (18), 
respectively.

The proof is very similar to that of Lemma 2 in Espitia (2020), 
and hence is omitted.

Lemma 3. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0, satisfying limj→∞ tj = +∞, generated by the CETC 
triggering rule in Definition  1. Let the MDT τ > 0 be chosen as in 
(57), for any a0, a1, a2 > 0 and ω1 > ω0 > 0. Then, for a piecewise 
right-continuous reset function f (t) : R≥0 → R>0 satisfying 

ḟ (t) =

{
−a2f 2(t) − a1f (t) − a0, for all t ∈ (tj, tj + τ ),
0, for all t ∈ (tj + τ , tj+1),

(68)

for all j ∈ N, with f (tj) = ω1 > 0 and f
(
(tj + τ )−

)
= f (tj + τ ), it 

follows that f (t) strictly decreases from f (tj) = ω1 to f (tj + τ ) = ω0
over t ∈ [tj, tj + τ ), and remains constant at f (t) = ω0 for all 
t ∈ [tj + τ , tj+1).

Proof. Considering (68) and noting that τ > 0 is chosen as in 
(57), we can straightforwardly show that f (t) goes from ω1 > 0 to 
ω0 > 0 when t goes from t = tj to t = tj+τ . We can also observe 
from (68) for all t ∈ (tj, tj +τ ) that ḟ (t) is negative when f (t) ≥ 0, 
forcing f (t) to strictly decrease. Thus, the function f (t) strictly 
decreases for all t ∈ [tj, tj + τ ) from f (tj) = ω1 to f (tj + τ ) = ω0. 
However, since ḟ (t) = 0 for all t ∈ (tj + τ , tj+1), the function f (t)
remains constant at f (t) = ω0 for all t ∈ [tj + τ , tj+1). □

In Fig.  2, we have shown a schematic of evolution of the reset 
function f (t).

3.1.2. Main proof
With Proposition  1 and Lemmas  1–3 in hand, we are now in 

a position to proceed with the proof of Theorem  1.
The well-posedness, in the sense of Theorem  1, is established 

by applying Proposition  1 iteratively between events. It follows 
from Lemma  1 that m(t) ≥ 0 for all t > 0, and from Lemma  3 
that f (t) > 0 for all t > 0 if the MDT τ > 0 is chosen as (57). 
Thus, we consider the following Lyapunov candidate: 
W (t) = W (t) + f (t)d2(t) + m(t), (69)
2 1
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where 
W1(t) = V1(t) + V2(t), (70)

with

V1(t) =

∫ 1

0

(
A
λ1
α̃2(x, t)e−

µx
λ1 +

B
λ2
β̃2(x, t)e

µx
λ2

)
dx, (71)

V2(t) =

∫ 1

0

(
C
λ1
α̂2(x, t)e−

µx
λ1 +

D
λ2
β̂2(x, t)e

µx
λ2

)
dx. (72)

Let the parameter µ > 0 be chosen as in (51), C > 0 be chosen 
as in (52), A > 0 be chosen such that 

A >e
µ
λ1

( C∥p̄1∥2

λ1δ
+

Cq2∥p̄2∥2e
µ
λ2

λ2δ
+ 3Cρ2q2e

µ
λ2 +

ε4

a2
+ κ4

)
,

(73)

for some δ > 0 such that µ > δ, and B,D > 0 to be chosen 
later. In (71) and (72), (α̃, β̃) satisfies (21)–(24) for all t > 0, and 
(α̂, β̂) satisfies (32)–(35) for all t ∈ (tj, tj+1), j ∈ N. Taking the 
time derivative of V1(t) and V2(t) for all t ∈ (tj, tj+1), j ∈ N and 
integrating by parts, we obtain that 

V̇1(t) = −µV1(t) − Aα̃2(1, t)e−
µ
λ1 − (B − Aq2)β̃2(0, t), (74)

and 

V̇2(t) = −µV2(t) +
2C
λ1

( ∫ 1

0
α̂(x, t)p̄1(x)e

−
µx
λ1 dx

)
α̃(1, t)

+
2D
λ2

( ∫ 1

0
β̂(x, t)p̄2(x)e

µx
λ2 dx

)
α̃(1, t)

− C α̂2(1, t)e−
µ
λ1 − (D − Cq2)β̂2(0, t) + Dβ̂2(1, t)e

µ
λ2 .

(75)

From Young’s and Cauchy–Schwarz inequalities and consider-
ing (35), we obtain that
β̂2(1, t) ≤ 3d2(t) + 3ρ2α̃2(1, t) + 3ρ2α̂2(1, t), (76)

2
( ∫ 1

0
α̂(x, t)p̄1(x)e

−
µx
λ1 dx

)
α̃(1, t) ≤ δ

∫ 1

0
α̂2(x, t)e−

µx
λ1 dx

+
∥p̄1∥2

δ
α̃2(1, t), (77)

2
( ∫ 1

0
β̂(x, t)p̄2(x)e

µx
λ2 dx

)
α̃(1, t) ≤ δ

∫ 1

0
β̂2(x, t)e

µx
λ2 dx

+
∥p̄2∥2e

µ
λ2

δ
α̃2(1, t), (78)

for all t ≥ 0, for some δ > 0. Thus, we write from (74), (75) that
V̇1(t) + V̇2(t) ≤ −µV1(t) − µV2(t) + δV2(t)

−

(
Ce−

µ
λ1 − 3ρ2De

µ
λ2

)
α̂2(1, t) − (D − Cq2)β̂2(0, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

D∥p̄2∥2e
µ
λ2

λ2δ
− 3ρ2De

µ
λ2

)
α̃2(1, t)

− (B − Aq2)β̃2(0, t) + 3De
µ
λ2 d2(t), (79)

for all t ∈ (tj, tj+1), j ∈ N. Let us choose B = Aq2 and D = Cq2. 
Then, (79) reduces to
V̇1(t) + V̇2(t) ≤ −µV1(t) − µV2(t) + δV2(t)

− Ce−
µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2

)
α̃2(1, t) + 3Cq2e

µ
λ2 d2(t), (80)
8

valid for all t ∈ (tj, tj+1), j ∈ N. Now let us consider W2(t) given 
by (69) for all t ∈ (tj, tj + τ ), j ∈ N.

For all t ∈ (tj, tj + τ ), j ∈ N:
Taking the time derivative of (69) for all t ∈ (tj, tj + τ ), j ∈ N, 

using Young’s inequality, and considering (46), (66), (68), (80), we 
write that 
Ẇ2(t) = V̇1(t) + V̇2(t) + ḟ (t)d2(t) + 2f (t)d(t)ḋ(t) + ṁ(t)

≤ V̇1(t) + V̇2(t) + ḟ (t)d2(t) + a2f 2(t)d2(t)

+
1
a2

(
ḋ(t)

)2
+ ṁ(t)

≤ −µV1(t) − µV2(t) + δV2(t)

− Ce−
µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2

)
α̃2(1, t)

+ 3Cq2e
µ
λ2 d2(t) −

(
a2f 2(t) + a1f (t) + a0

)
d2(t)

+ a2f 2(t)d2(t) +
ε0

a2
d2(t) +

ε1

a2
∥α̂[t]∥2

+
ε2

a2
∥β̂[t]∥2

+
ε3

a2
α̂2(1, t) +

ε4

a2
α̃2(1, t) − ηm(t) + κ1∥α̂[t]∥2

+ κ2∥β̂[t]∥2
+ κ3α̂

2(1, t) + κ4α̃
2(1, t),

, (81)

for some a2 > 0. Note from (72) that we can write recalling our 
choice D = Cq2 that 

∥α̂[t]∥2
+ ∥β̂[t]∥2

≤
r
C
V2(t), (82)

for all t ≥ 0, where r is given by (53). Therefore, (81) can be 
rewritten as 
Ẇ2(t) ≤ −µV1(t)

−

(
µ− δ −

max{ε1, ε2}r
Ca2

−
max{κ1, κ2}r

C

)
V2(t)

−

(
Ce−

µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
−
ε3

a2
− κ3

)
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2 −

ε4

a2
− κ4

)
α̃2(1, t)

− a1f (t)d2(t)−
(
a0 − 3Cq2e

µ
λ2 −

ε0

a2

)
d2(t) − ηm(t).

(83)

Let 

υetc := µ− δ −
max{ε1, ε2}r

Ca2
−

max{κ1, κ2}r
C

, (84)

and note from (52) that choice of δ > 0 such that δ < µ and the 
choice of C > 0 ensures υetc > 0. Furthermore, the same choice of 
C > 0 in (52) ensures Ce−

µ
λ1

(
1−3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
−
ε3
a2

−κ3 > 0
since the choice of µ > 0 as in (51) subject to Assumption  1 leads 
to 1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

)
> 0. Therefore, noting that A > 0 chosen 

as in (73) ensures Ae−
µ
λ1 −

C∥p̄1∥
2

λ1δ
−

Cq2∥p̄2∥
2e

µ
λ2

λ2δ
− 3Cρ2q2e

µ
λ2 −

ε4
a2

− κ4 > 0 and choosing a0 > 0 as (49), we rewrite (83) as 

Ẇ2(t) ≤ −υetcW1(t) − a1f (t)d2(t) − ηm(t)
≤ −υ⋆etcW2(t),

(85)

for all t ∈ (tj, tj + τ ), j ∈ N, where 

υ⋆ := min{υ , a , η}. (86)
etc etc 1
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For all t ∈ (tj + τ , tj+1), j ∈ N :

For all t ∈ (tj + τ , tj+1), j ∈ N, we have that f (t) = ω0 > 0
(see Lemma  3). Taking the time derivative of (69) for all t ∈

(tj+τ , tj+1), j ∈ N, using Young’s inequality, and considering (47), 
(66), (68), (80), we can write that 
Ẇ2(t) = V̇1(t) + V̇2(t) + 2ω0d(t)ḋ(t) + ṁ(t)

≤ V̇1(t) + V̇2(t) + a2ω2
0d

2(t) +
1
a2

(
ḋ(t)

)2
+ ṁ(t)

≤ −µV1(t) − µV2(t) + δV2(t)

− Ce−
µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2

)
α̃2(1, t) + 3Cq2e

µ
λ2 d2(t) + a2ω2

0d
2(t)

+
ε0

a2
d2(t) +

ε1

a2
∥α̂[t]∥2

+
ε2

a2
∥β̂[t]∥2

+
ε3

a2
α̂2(1, t)

+
ε4

a2
α̃2(1, t) − ηm(t) − θd2(t) + κ1∥α̂[t]∥2

+ κ2∥β̂[t]∥2
+ κ3α̂

2(1, t) + κ4α̃
2(1, t).

(87)

Recalling (82) and rearranging (87), we obtain that 

Ẇ2(t) ≤ − µV1(t)−
(
µ− δ −

max{ε1, ε2}r
Ca2

−
max{κ1, κ2}r

C

)
V2(t)

−

(
Ce−

µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
−
ε3

a2
− κ3

)
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2 −

ε4

a2
− κ4

)
α̃2(1, t)

−

(
θ − 3Cq2e

µ
λ2 −

ε0

a2
− a2ω2

0

)
d2(t) − ηm(t).

(88)

By selecting θ > 0 as (48), (49), we simplify (88) to obtain 

Ẇ2(t) ≤ − µV1(t)−
(
µ− δ −

max{ε1, ε2}r
Ca2

−
max{κ1, κ2}r

C

)
V2(t)

−

(
Ce−

µ
λ1

(
1 − 3ρ2q2eµ

(
1
λ1

+
1
λ2

) )
−
ε3

a2
− κ3

)
α̂2(1, t)

−

(
Ae−

µ
λ1 −

C∥p̄1∥2

λ1δ
−

Cq2∥p̄2∥2e
µ
λ2

λ2δ

− 3Cρ2q2e
µ
λ2 −

ε4

a2
− κ4

)
α̃2(1, t)

− a1ω0d2(t) − ηm(t).

(89)

Then, following steps similar to (84)–(86) and recalling from 
Lemma  3 that f (t) = ω0 > 0 for all t ∈ [tj + τ , tj+1), j ∈ N, 
we can show that 

Ẇ2(t) ≤ −υ⋆etcW2(t), (90)

for all t ∈ (t + τ , t ), j ∈ N.
j j+1

9

Recall that m(tj+τ ) is chosen such that m
(
(tj+τ )−

)
= m(tj+τ ), 

and from Lemma  3 that f
(
(tj+τ )−

)
= f (tj+τ ) = ω0. Further, note 

that d
(
(tj+τ )−

)
= d(tj+τ ) and that ∥α̂[t]∥, ∥β̂[t]∥, ∥α̃[t]∥, ∥β̃[t]∥

are continuous. Thus, considering (85), (90), (69)–(72), it can be 
shown that 
W2(t) ≤ e−υ⋆etc(t−tj)W2(tj), (91)

for all t ∈ (tj, tj+1), j ∈ N. But we have that 

W2(t−j ) =W1(t−j ) + f (t−j )d2(t−j ) + m(t−j )

=W1(t−j ) + ω0d2(t−j )

=W1(tj) + ω0d2(t−j ),

(92)

as f (t−j ) = ω0 (see Lemma  3) and m(t−j ) = 0 (since events are 
triggered according to (45)). On the other hand, we have that 
W2(tj) = W1(tj) + f (tj)d2(tj) + m(tj) = W1(tj) + m(tj), (93)

as d(tj) = 0. Thus, if m(tj) is chosen as in (60), we have that 

W2(t−j ) = W2(tj),  for j ∈ N>0. (94)

Therefore, using (91) and (94) recursively, we can show that 
W2(t) ≤e−υ⋆etc(t−tj)W2(tj) = e−υ⋆etc(t−tj)W2(t−j )

≤e−υ⋆etc(t−tj) × e−υ⋆etc(tj−tj−1)W2(tj−1)
...

≤e−υ⋆etc(t−tj) ×

i=j∏
i=1

e−υ⋆etc(ti−ti−1)W2(0)

=e−υ⋆etctW2(0),

(95)

for all t > 0. But we have that 
W2(0) = W1(0) + f (0)d2(0) + m(0) = W1(0), (96)

as d(0) = 0 and m(0) = 0, and 
W1(t) ≤ W2(t), (97)

for all t ≥ 0. Thus, it follows from (95) that 
W1(t) ≤ e−υ⋆etctW1(0), (98)

for all t > 0. Then, using the standard arguments of PDE back-
stepping involving the bounded invertibility of the transforma-
tions (19), (20), (25), (26), (30), (31), (39), (40), we obtain (61). 
This completes the proof of Theorem  1. □

Remark 3. In existing dynamic CETC approaches using PDE back-
stepping for both parabolic PDEs (Demir, Koga, & Krstic, 2024; 
Rathnayake & Diagne, 2024a; Rathnayake et al., 2025; Rath-
nayake, Diagne, Espitia, & Karafyllis, 2022; Rathnayake, Diagne, & 
Karafyllis, 2022; Wang & Krstic, 2023) and hyperbolic PDEs (Es-
pitia, 2020; Espitia et al., 2022a, 2022b, 2020; Wang & Krstic, 
2021, 2022a, 2022b, 2022c; Zhang et al., 2025; Zhang & Yu, 2024), 
the authors have only been able to establish (global) exponential 
convergence of the closed-loop system to the origin, satisfying an 
estimate of the form 

Φ(t) ≤ Me−
υ⋆t
2

(
∥u[0]∥2

+ ∥û[0]∥2
+ ∥v[0]∥2

+ ∥v̂[0]∥2
+ m(0)

)1/2

,

(99)

for all t > 0, where Φ(t) is given by (62), M > 0 and υ⋆ > 0
are some positive constants, and m(0) is strictly positive. Unlike 
the current work, where an MDT between two events is explicitly 
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enforced, the aforementioned works require proving the exis-
tence of an MDT since such time regularization between events 
is not explicitly enforced. The approach used by the authors in 
those works to demonstrate the existence of an MDT between 
events under the triggering conditions necessitates that m(0)
be chosen strictly positive. This constraint prevents the authors 
from obtaining an exponential stabilization result as (61), (62). 
However, in this work, due to the use of time regularization in 
the triggering mechanism (45) as well as the use of switching 
dynamics (46), (47) for the dynamic variable m(t), we are able 
to choose m(0) = 0. This, along with the careful choice of 
the Lyapunov candidate (69)–(72) consisting of a dynamic reset 
variable f (t) satisfying (68), facilitates the achievement of the GES 
of the closed-loop system.

Remark 4. The closed-loop system Lyapunov candidate W2(t), 
given by (69)–(72), has been carefully chosen to ensure that it re-
mains dissipative even though the system operates in open-loop 
between events. The functions f (t)d2(t) and m(t) are employed to 
mitigate the effects of control input sampling, with their effects 
manifesting over different intervals between events, specifically 
(tj, tj + τ ) and (tj + τ , tj+1), j ∈ N. During the interval t ∈ (tj, tj +
τ ), j ∈ N, the strictly decreasing function f (t), modulated by d2(t), 
compensates for the effects of input sampling. Meanwhile, during 
the interval t ∈ (tj + τ , tj+1), j ∈ N, the dynamic variable m(t)
compensates for these effects. In works such as Dolk and Heemels 
(2017), Dolk, Ploeg, and Heemels (2017), Dolk, Tesi, et al. (2017), 
similar Lyapunov candidates have been employed for systems 
described by ODEs.

The CETC design (41)–(43), (45)–(47) automatically provides 
an aperiodic sampled-data control approach characterized by a 
maximum upper diameter equal to the MDT τ > 0 of the CETC, 
ensuring the GES. The result is summarized in the following 
corollary.

Corollary 1. Consider a set of sampling times I = {tj}j∈N with 
t0 = 0 satisfying limj→∞ tj = +∞. For every (u(·, 0), v(·, 0))T ∈

L2((0, 1);R2), and (û(·, 0), v̂(·, 0))T ∈ L2((0, 1);R2), there ex-
ist unique solutions (u, v)T ∈ C0(R>0; L2((0, 1);R2)), (û, v̂)T ∈

C0(R>0; L2((0, 1);R2)) to the systems (1)–(4), (7)–(10), (17), (18), 
(41)–(43). Let supj≥0(tj+1 − tj) ≤ τ , where τ > 0 is chosen as in 
(57) with a1, a2 > 0, ω1 > ω0 > 0 being free parameters, and let 
a0 > 0 be chosen such that 

a0 = 3Cq2e
µ
λ2 +

ε0

a2
, (100)

where ε0 > 0 is given by (50), subject to Assumption  1, µ is chosen 
as in (51), and C > 0 is chosen such that 

C > max
{

e
µ
λ1

1 − 3ρ2q2eµ
(

1
λ1

+
1
λ2

) ε3
a2
,
max{ε1, ε2}r
(µ− δ)a2

}
, (101)

for some δ > 0 such that δ < µ, and ε1, ε2, ε3 > 0 given 
by (54)–(56), and r defined as (53). Then, under the sampled-
data boundary control (41)–(43), the closed-loop system (1)–(4), 
(7)–(10), (17), (18) is globally exponentially stable. More specifically, 
the following estimate holds: 

Φ(t) ≤ Me−
υ⋆

2 tΦ(0), (102)

for some constants M, υ⋆ > 0.

The proof follows a procedure similar to that used in the proof 
of Theorem  1, using the Lyapunov function (69)–(72) with m(t) ≡

0 for all t ≥ 0.
10
4. Periodic event-triggered control (PETC)

In this section, we present a triggering design that facilitates 
control updates only at specific events and requires only periodic 
evaluation of a triggering function to detect events, hence the 
term periodic event-triggering. We develop an appropriate trigger-
ing function, m̃(t), and establish an upper bound for the sampling 
period h > 0 used for these periodic evaluations. Periodically 
evaluating m̃(t) and updating the control input whenever m̃(t) <
0 at an evaluation time t = nh, n ∈ N ensures that the dynamic 
variable m(t) governed by (46), (47) satisfies m(t) ≥ 0 for all 
t > 0 along the PETC solution. This enables establishing the GES 
of the PETC closed-loop system, analogous to Theorem  1. Below, 
we present the details of the design.

Definition 2. Let η, θ, κ1, κ2, κ3, κ4 > 0 be event-trigger param-
eters. The set of event times I = {tj}j∈N under PETC, which forms 
an increasing sequence satisfying limj→∞ tj = +∞, is defined by 
the following rule: 
tj+1 = inf

{
t ≥ tj + τ | m̃(t) < 0, t = nh, h > 0, n ∈ N

}
, (103)

where τ > 0 is the MDT to be specified, and h > 0 is a sampling 
period to be chosen appropriately. The function m̃(t) is defined as 

m̃(t) := m(t) −
θ

a

(
eah − 1

)
d2(t), (104)

where d(t) is given in (44), and m(t) satisfies (46) and (47). The 
constant a is defined as 
a = 1 + ε0 + η, (105)

with ε0 given by (50).

Theorem 2. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0, satisfying limj→∞ tj = +∞, generated by the 
PETC triggering rule in Definition  2. For every (u(·, 0), v(·, 0))T ∈

L2((0, 1);R2), and (û(·, 0), v̂(·, 0))T ∈ L2((0, 1);R2), there exist 
unique solutions (u, v)T ∈ C0(R>0; L2((0, 1);R2)) and (û, v̂)T ∈

C0(R>0; L2((0, 1);R2)) to (1)–(4), (7)–(10), (17), (18), (41)–(43). 
Choose the event-trigger parameters η, θ, κ1, κ2, κ3, κ4 > 0 as in 
Assumption  2, and the MDT τ > 0 as (57). Let the sampling period 
h > 0 satisfy 

0 < h ≤ min{τ , τ1, τ2, τ3, τ4},  and 
τ

h
∈ N>0, (106)

where 

τi :=
1
a
ln

(
1 +

κia
εiθ

)
, i = 1, 2, 3, 4, (107)

with ε1, ε2, ε3, ε4 > 0 given by (54)–(56), (67) and a > 0 given 
by (105). Further, choose the initial conditions of m(t) satisfying 
(46), (47) as in (58)–(60). Then, under the PETC triggering rule in 
Definition  2, the closed-loop system (1)–(4), (7)–(10), (17), (18), 
(41)–(43) is globally exponentially stable, satisfying the estimate 
(61), (62).

Remark 5. In the PETC triggering function (104), as h → 0, we 
observe that 
m̃(t) → m(t). (108)

That is, PETC in Definition  2 converges to CETC in Definition  1 
as h → 0. This observation reveals two key insights. First, if h
is very small, one can safely implement CETC on a computer by 
periodically checking the triggering function m(t) at intervals of 
length h or less to detect events. However, such a small h is gen-
erally undesirable due to the computational burden of frequent 
evaluations. Second, if it is possible to choose a large value for 
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h, PETC should be preferred over CETC, since PETC is specifically 
designed to require only periodic evaluations of the triggering 
function m̃(t) to detect events.

Remark 6. Although the sampling period h > 0 must be chosen 
to be less than the MDT τ > 0, we still retain some degree of 
freedom in selecting h. Considering (63) under the case ∆ = 0, 
we obtain 

τ =
ω1 − ω0

a2
(
ω1 +

a1
2a2

)(
ω0 +

a1
2a2

) . (109)

Instead of directly calculating the MDT τ , we may choose any 
τ > 0 such that 

0 < τ <
1

a2
(
ω0 +

a1
2a2

) , (110)

and then compute ω1 > ω0 using (109) as 

ω1 =

ω0 +
τa1
2

(
ω0 +

a1
2a2

)
1 − τa2

(
ω0 +

a1
2a2

) . (111)

Therefore, we have some flexibility in selecting the MDT τ > 0
and, consequently, the sampling period h > 0.

In the following subsection, we complete the proof of Theorem 
2.

4.1. Proof of Theorem  2

4.1.1. Preliminaries
Before proceeding to the proof of Theorem  2, we provide 

several necessary auxiliary results below in Lemmas  4 and 5.

Lemma 4. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0 satisfying limj→∞ tj = +∞, generated by the PETC 
triggering rule in Definition  2. Also, consider the dynamic variable 
m(t) governed by (46), (47) with m(t0) = 0, m(tj) ≥ 0, j ∈ N>0
to be chosen, and m

(
(tj + τ )−

)
= m(tj + τ ), j ∈ N for any τ > 0. 

Then, it holds that m(t) ≥ 0 for all t ∈ (tj, tj + τ ], j ∈ N. Choose the 
sampling period h > 0 as in (106), (107). Then, it holds that 

m(t) ≥
θ

a

(
a
θ
m(nh) −

(
ea(t−nh)

− 1
)
d2(nh)

)
e−η(t−nh), (112)

for all t ∈
[
nh, (n + 1)h

)
 and n ∈

[
(tj + τ )/h, tj+1/h

)
∩ N, where 

d(t) is given by (44).

Proof. If m(t0) = 0, m(tj) ≥ 0, j ∈ N>0 to be chosen, and 
m

(
(tj + τ )−

)
= m(tj + τ ), j ∈ N, using similar arguments used 

in the proof of Lemma  1, it can be shown that m(t) ≥ 0 for all 
t ∈ (tj, tj + τ ], j ∈ N.

For all t ∈ (nh, (n+ 1)h) and n ∈
[
(tj + τ )/h, tj+1/h

)
∩N, using 

Young’s inequality and considering (66), we can write that 
̇

(
d2(t)

)
= 2d(t)ḋ(t) ≤ d2(t) +

(
ḋ(t)

)2
≤ (1 + ε0)d2(t) + ε1∥α̂[t]∥2

+ ε2∥β̂[t]∥2

+ ε3α̂
2(1, t) + ε4α̃

2(1, t).

(113)

Since the both sides of the inequality (113) are well-behaved, 
there exists ι(t) ≥ 0 such that 

̇
(
d2(t)

)
=(1 + ε0)d2(t) + ε1∥α̂[t]∥2

+ ε2∥β̂[t]∥2

2 2
(114)
+ ε3α̂ (1, t) + ε4α̃ (1, t) − ι(t),

11
for all t ∈ (nh, (n+1)h) and n ∈
[
(tj+τ )/h, tj+1/h

)
∩N. Combining 

(47) and (114), we can write the following system valid for all 
t ∈ (nh, (n + 1)h) and n ∈

[
(tj + τ )/h, tj+1/h

)
∩ N

ż(t) = Az(t) + ψ(t), (115)

where 

z(t) =

[
m(t)
d2(t)

]
, A =

[
−η −θ

0 1 + ε0

]
,

ψ(t)=
[
κ1∥α̂[t]∥2

+ κ2∥β̂[t]∥2
+ κ3α̂

2(1, t) + κ4α̃
2(1, t)

ε1∥α̂[t]∥2
+ε2∥β̂[t]∥2

+ε3α̂
2(1, t)+ε4α̃2(1, t)−ι(t)

]
.

(116)

Thus, from (115), we can obtain that 

z(t) = eA(t−nh)z(nh) +

∫ t

nh
eA(t−ξ )ψ(ξ )dξ, (117)

for all t ∈ [nh, (n + 1)h) and n ∈
[
(tj + τ )/h, tj+1/h

)
∩ N, from 

which it follows that 

m(t) = ReA(t−nh)z(nh) +

∫ t

nh
ReA(t−ξ )ψ(ξ )dξ, (118)

for all t ∈ [nh, (n + 1)h) and n ∈
[
(tj + τ )/h, tj+1/h

)
∩ N, where 

R =
[
1 0

]
. (119)

The eigenvalues of A are −η and 1 + ε0. Using matrix diagonal-
ization, eAt can be obtained as 

eAt
=

[
1 −

θ
a

0 1

][
e−ηt 0
0 e(1+ε0)t

][
1 θ

a
0 1

]
, (120)

where a is given by (105). Therefore, we can show that 

ReA(t−ξ )ψ(ξ ) =

(
κ1g1(t − ξ ) − ε1g2(t − ξ )

)
∥α̂[ξ ]∥2

+

(
κ2g1(t − ξ ) − ε2g2(t − ξ )

)
∥β̂[ξ ]∥2

+

(
κ3g1(t − ξ ) − ε3g2(t − ξ )

)
α̂2(1, ξ )

+

(
κ4g1(t − ξ ) − ε4g2(t − ξ )

)
α̃2(1, ξ )

+ g2(t − ξ )ι(ξ ),

(121)

where 
g1(t) = e−ηt

≥ 0, (122)

and 

g2(t) =
θ

a

(
eat − 1

)
e−ηt

≥ 0. (123)

Considering (122) and (123), recalling that nh ≤ ξ ≤ t < (n+1)h, 
and that h > 0 has been chosen as in (106), (107), it can be shown 
that 

κig1(t − ξ ) − εig2(t − ξ ) =
εiθ

a

(
1 +

κia
εiθ

− ea(t−ξ )
)

e−η(t−ξ )

≥
εiθ

a

(
1 +

κia
εiθ

− eah
)

e−ηh
≥ 0,

(124)

for i = 1, 2, 3, 4. Thus, it follows from (121) that 
ReA(t−ξ )ψ(ξ ) ≥ 0, (125)

for all t, ξ  such that nh ≤ ξ ≤ t < (n + 1)h, and n ∈
[
(tj +

τ )/h, tj+1/h
)
∩N. Therefore, considering (118)–(120), (125), it can 

be shown that 
m(t) ≥ReA(t−nh)z(nh)

=
θ

(
a
m(nh) −

(
ea(t−nh)

− 1
)
d2(nh)

)
e−η(t−nh).

(126)

a θ
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for all t ∈
[
nh, (n + 1)h

)
 and n ∈

[
(tj + τ )/h, tj+1/h

)
∩ N. This 

completes the proof. □

Lemma 5. Consider a set of increasing event times I = {tj}j∈N
with t0 = 0 satisfying limj→∞ tj = +∞, generated by the PETC 
triggering rule in Definition  2. Also consider the dynamic variable 
m(t) governed by (46), (47) with m(t0) = 0, m(tj) ≥ 0, j ∈ N>0 to 
be chosen, and m

(
(tj + τ )−

)
= m(tj + τ ), j ∈ N, for any τ > 0. 

Let the sampling period h > 0 be chosen as in (106), (107). Then, it 
holds that m(t) ≥ 0 for all t > 0.

Proof. Let us assume an event has triggered at t = tj and m(tj) ≥

0, j ∈ N. Then, it follows from Lemma  4 that m(t) ≥ 0 for all 
t ∈ (tj, tj + τ ], j ∈ N. At every t = nh, the periodic event-trigger 
(103)–(105) is evaluated, leading to an event trigger only if t ≥

tj + τ  and m̃(nh) < 0,i.e., m(nh) < θ
a

(
eah − 1

)
d2(nh), necessitating 

a control update. In cases when t ≥ tj + τ  and m̃(nh) ≥ 0, i.e.,
m(nh) ≥

θ
a

(
eah − 1

)
d2(nh), an update is not required as it holds 

that m(t) ≥ 0 for all t ∈ [nh, (n+ 1)h). This is because the RHS of 
(112) is definitely non-negative when m(nh) ≥

θ
a

(
eah − 1

)
d2(nh). 

Thus, m(t) will remain non-negative at least until t = tj+1 when 
m̃(t−j+1) < 0, i.e., m(t−j+1) < θ

a

(
eah − 1

)
d2(t−j+1), at which the 

control input is updated, and m(tj+1) ≥ 0 is chosen. Therefore, 
if m(t0) = 0 and m(tj) ≥ 0, j ∈ N, it holds that m(t) ≥ 0 for all 
t ∈ (tj + τ , tj+1), j ∈ N, implying that m(t) ≥ 0 for all t > 0. This 
completes the proof. □

4.1.2. Main proof
With Proposition  1 and Lemmas  4 and 5 in hand, we are now 

in a position to proceed with the proof of Theorem  2.
The well-posedness in the sense of Theorem  2 is obtained by 

applying Proposition  1 iteratively in between events.
Since the initial conditions of m(t) are chosen as (58)–(60) and 

the sampling period h > 0 is chosen as in (106), (107), it follows 
from Lemma  5 that m(t) ≥ 0 for all t > 0. Furthermore, since 
the MDT τ > 0 is chosen as in (57), it follows from Lemma  3 
that for the function f (t) satisfying (68), with f (tj) = ω1 > 0 and 
f
(
(tj + τ )−

)
= f (tj + τ ) = ω0 > 0 for all j ∈ N, we have f (t) > 0

for all t > 0. Thus, we can follow the same proof procedure as in 
the proof of Theorem  1, using the Lyapunov candidate (69)–(73), 
to establish the GES of the closed-loop system under the PETC 
approach. The only difference is that as opposed to (92) where 
m(t−j ) = 0, under PETC, it holds that 

W2(t−j ) = W1(tj) + ω0d2(t−j ) + m(t−j ), (127)

where m(t−j ) ≥ 0 (see Lemma  5). However, since m(tj) is chosen 
as (60) and that d(tj) = 0, we have that 

W2(tj) = W1(tj) + ω0d2(t−j ) ≤ W2(t−j ). (128)

Then, using similar arguments to those used in (95)–(98), the GES 
of the closed-loop system is obtained. This completes the proof of 
Theorem  2. □

5. Self-triggered control (STC)

In this section, we consider the full-state feedback problem 
only. Thus, dismissing the observer-induced effects in Section 2, 
we write the full-state feedback sampled-data control input as 

U(tj) := Uj =

∫ 1

0
Nα(y)α(y, tj)dy +

∫ 1

0
Nβ (y)β(y, tj)dy, (129)

for all t ∈ [tj, tj+1), j ∈ N, where Nα , Nβ are given by (42), (43), 
and (α, β) satisfies
α (x, t) + λ α (x, t) = 0, ∀x ∈ (0, 1), (130)
t 1 x

12
βt (x, t) − λ2βx(x, t) = 0, ∀x ∈ (0, 1), (131)

α(0, t) = qβ(0, t), (132)

β(1, t) = ρα(1, t) + d(t), (133)

for all t ∈ (tj, tj+1), j ∈ N, with d(t) being the control input 
sampling error given by 

d(t) =

∫ 1

0
Nα(y)

(
α(y, tj) − α(y, t)

)
dy

+

∫ 1

0
Nβ (y)

(
β(y, tj) − β(y, t)

)
dy,

(134)

for all t ∈ (tj, tj+1), j ∈ N. We design a self-triggering mechanism 
to determine the control update times.

Assumption 3. The reflection terms are small enough such that 
the following inequality holds: 

|ρq| <
1

√
2
. (135)

Note that Assumption  3 is less restrictive than Assumption  1.
Below we present the details of STC.

Definition 3. Let η, θ, µ, ω0 > 0 be self-trigger parameters. 
The set of event times I = {tj}j∈N under STC, which forms an 
increasing sequence satisfying limj→∞ tj = +∞, is defined by the 
following rule: 
t1 =t0 + τ ,

tj+1 =tj + τ

+
1

ϱ⋆ + η
ln

(
1 +

(ϱ⋆ + η)ω0
(
Uj − Uj−1

)2
θe(ϱ⋆+η)τ

(
H(α[tj], β[tj]) + ϵ

) )
,

(136)

for j ∈ N>0, where τ > 0 is the MDT to be set, ϵ > 0, Uj, j ∈ N
given by (129) is the control input updated at t = tj, 

ϱ⋆ := 2q2e
µ
λ2 ϱ, (137)

H
(
α[t], β[t]

)
:= 3ϱ

∫ 1

0

( 1
λ1
α2(x, t)e−

µx
λ1 +

q2

λ2
β2(x, t)e

µx
λ2

)
dx,

(138)

with 

ϱ = 4max
{
λ1∥Nα∥2e

µ
λ1 ,

λ2

q2
∥Nβ∥2

}
. (139)

In (139), Nα and Nβ are given by (42), (43). Further, in (136), 
(138), α[t], β[t] are given by 

α(x, t) =u(x, t) −

∫ x

0
K uu(x, y)u(y, t)dy

−

∫ x

0
K uv(x, y)v(y, t)dy,

(140)

β(x, t) =v(x, t) −

∫ x

0
K vu(x, y)u(y, t)dy

−

∫ x

0
K vv(x, y)v(y, t)dy,

(141)

where K uu, K uv, K vu, K vv are the backstepping gain kernels de-
fined in the triangular domain 0 ≤ y ≤ x ≤ 1. The readers are 
referred to Vazquez et al. (2011) for details on these gain kernels.

Remark 7. CETC in Definition  1 continuously monitors a trig-
gering function to detect events, whereas PETC in Definition 
2, monitors a triggering function only periodically. Due to the 
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involvement of the dynamic variable m(t) satisfying (46), (47), 
in both CETC and PETC triggering functions, both schemes even 
in the full-state feedback case require continuous measurements 
from the plant in order to compute and evolve the dynamic 
variable m(t). In contrast, STC in Definition  3 requires neither 
continuous monitoring of a triggering function nor continuous 
measurements from the plant. At each event time, the STC trig-
gering rule (136) computes the next event time using only the 
measurements obtained at the current event and the immediate 
previous event. In this sense, we refer to the STC design as relying 
solely on event-triggered measurements, in contrast to CETC and 
PETC, which rely on continuous measurements.

Assumption 4 (Self-trigger Parameter Selection). The parameters 
η, ω0 > 0 are free parameters. Subject to Assumption  3, the 
parameter µ > 0 is chosen such that 

0 < µ <
λ1λ2

λ1 + λ2
ln

(
1

2ρ2q2

)
. (142)

Furthermore, the parameter θ > 0 is chosen as 
θ = a2ω2

0 + a1ω0 + a0, (143)

where a1, a2 > 0, and 

a0 = 2Cq2e
µ
λ2 +

ε0

a2
. (144)

Here, 

ε0 = 4λ22
(
Nβ (1)

)2
, (145)

where Nβ (y) is given in (43), and C > 0 is chosen to satisfy 

C > max
{

e
µ
λ1

1 − 2ρ2q2eµ
(

1
λ1

+
1
λ2

)
(
ε3

a2
+ κ3

)
,

1
µ

(
max{ε1, ε2}r

a2
+ max{κ1, κ2}r

) }
,

(146)

for some constants κ1, κ2, κ3 > 0 with r given by (53). Moreover,

ε1 = 4λ21

∫ 1

0

(
Ṅα(y)

)2
dy, (147)

ε2 = 4λ22

∫ 1

0

(
Ṅβ (y)

)2
dy, (148)

ε3 = 4
(
λ1Nα(1) − ρλ2Nβ (1)

)2
, (149)

where Nα(y) is given in (42).

Theorem 3. Consider a set of increasing event times I = {tj}j∈N with 
t0 = 0, satisfying limj→∞ tj = +∞, generated by the STC triggering 
rule in Definition  3. For every (u(·, 0), v(·, 0))T ∈ L2((0, 1);R2), 
there exists a unique solution (u, v)T ∈ C0(R>0; L2((0, 1);R2))
to the system (1)–(4), (129). Choose the self-trigger parameters 
η, θ, µ, ω0 > 0 as outlined in Assumption  4 and the MDT τ > 0
as 

τ =

∫ ω1

ω0

1
a2s2 + a1s + a0

ds, (150)

where a1, a2 > 0, ω1 > ω0 > 0, and a0 > 0 is chosen as 
(144). Then, under the STC triggering rule in Definition  3, the closed-
loop system (1)–(4), (129) is globally exponentially stable. More 
specifically, the following estimate holds: 

Φ(t) ≤ Mstce−
υ⋆stc
2 tΦ(0), (151)

for all t > 0, where Φ(t) = ∥u[t]∥ + ∥v[t]∥, for some constants 
M , υ⋆ > 0.
stc stc

13
5.1. Proof of Theorem  3

5.1.1. Preliminaries
Before proceeding to the proof of Theorem  3, we provide 

several necessary auxiliary results below in Lemmas  6 and 7.

Lemma 6. Consider a set of increasing event times I = {tj}j∈N with 
t0 = 0, satisfying limj→∞ tj = +∞, generated by the STC triggering 
rule in Definition  3. Then, under Assumption  3, if the self-trigger 
parameter µ > 0 is chosen as in (142), the control input sampling 
error d(t), given by (134), satisfies the following estimate for all 
t ∈ [tj, tj+1), j ∈ N: 

d2(t) ≤ H
(
α[tj], β[tj]

)
eϱ
⋆(t−tj), (152)

where H(·, ·) is given by (138), (139), and ϱ⋆ > 0 is given by (137), 
(139).

The proof follows similar steps to that of Lemma 6 of Zhang 
et al. (2025).

Lemma 7. Consider a set of increasing event times I = {tj}j∈N with 
t0 = 0, satisfying limj→∞ tj = +∞, generated by the STC triggering 
rule in Definition  3. Furthermore, consider a dynamic variable m(t)
that satisfies 

ṁ(t) = − ηm(t) + κ1∥α[t]∥2
+ κ2∥β[t]∥2

+ κ3α
2(1, t), (153)

for all t ∈ (tj, tj + τ ), j ∈ N, and 

ṁ(t) = − ηm(t) − θd2(t) + κ1∥α[t]∥2
+ κ2∥β[t]∥2

+ κ3α
2(1, t),

(154)

for all t ∈ (tj + τ , tj+1), j ∈ N, with m(t0) = m(0) = 0, 
m((tj+τ )−) = m(tj+τ ) for any τ > 0, and m(tj) for j ∈ N>0 defined 
as m(tj) = ω0(Uj − Uj−1)2, where Uj, j ∈ N, is the control input 
updated at t = tj as given by (129). Assume that η, θ, κ1, κ2, κ3 > 0. 
In (154), d(t) is defined by (134). If the self-trigger parameter µ > 0
is chosen according to (142), then it holds that m(t) ≥ 0 for all 
t > 0.

Proof. Considering (153), we obtain that 

m(t) =e−η(t−tj)m(tj) +

∫ t

tj

e−η(t−ξ )
(
κ1∥α[ξ ]∥2

+ κ2∥β[ξ ]∥2
+ κ3α

2(1, ξ )
)
dξ

≥e−η(t−tj)m(tj),

(155)

for all t ∈ (tj, tj + τ ], j ∈ N. If m(tj) is chosen m(tj) ≥ 0, it follows 
that m(t) ≥ 0 for all t ∈ (tj, tj + τ ], j ∈ N.

Now consider the time period when t ∈ (tj + τ , tj+1), j ∈ N>0. 
Recalling (152) from Lemma  6 and considering (154), we obtain 
that 
ṁ(t) ≥ −ηm(t) − θH

(
α[tj], β[tj]

)
eϱ
⋆(t−tj), (156)

from which it follows that 
m(t) ≥ m(tj + τ )e−η(t−tj−τ )

−
θH

(
α[tj], β[tj]

)
eϱ
⋆τ

ϱ⋆ + η
e−η(t−tj−τ )

(
e(ϱ

⋆
+η)(t−tj−τ ) − 1

)
,

(157)

for all t ∈ [tj + τ , tj+1), j ∈ N>0. Then, noting from (155) that 
m(tj + τ ) ≥ e−ητm(tj), we obtain 

m(t) ≥ m(tj)e−ητ e−η(t−tj−τ )

−
θH

(
α[tj], β[tj]

)
eϱ
⋆τ

e−η(t−tj−τ )
(
e(ϱ

⋆
+η)(t−tj−τ ) − 1

)
,

(158)
ϱ⋆ + η
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for all t ∈ [tj + τ , tj+1), j ∈ N>0. Then, it directly follows that 

m(t) ≥ e−η(t−tj−τ )
{

m(tj)e−ητ

−
θH

(
α[tj], β[tj]

)
eϱ
⋆τ

ϱ⋆ + η

(
e(ϱ

⋆
+η)(tj+1−tj−τ ) − 1

)}
,

(159)

for all t ∈ [tj+τ , tj+1), j ∈ N>0. Then, recalling that m(tj) is chosen 
as m(tj) = ω0

(
Uj−Uj−1

)2 for j ∈ N>0 and that events are triggered 
according to (136), we have that 

m(t) ≥ e−η(t−tj)
ω0

(
Uj − Uj−1

)2
ϵ

H
(
α[tj], β[tj]

)
+ ϵ

≥ 0, (160)

for all t ∈ [tj + τ , tj+1), j ∈ N>0. Therefore, we can conclude that 
m(t) ≥ 0 for all t > 0. □

5.1.2. Main proof
The well-posedness in the sense of Theorem  3 is obtained 

by iteratively applying the results of Proposition  1 in between 
events.

Let the initial conditions of m(t) governed by (153), (154) be 
chosen as
m(t0) = m(0) = 0, (161)

m
(
(tj + τ )−

)
= m(tj + τ ),  for j ∈ N, (162)

m(tj) = ω0
(
Uj − Uj−1

)2
= ω0d2(t−j ),  for j ∈ N>0,

(163)

where d(t) is given by (134). Then, it follows from Lemma  7 that 
m(t) satisfies m(t) ≥ 0 for all t > 0.

Let us consider the following Lyapunov candidate 
W2(t) = W1(t) + f (t)d2(t) + m(t), (164)

where f (t) satisfies (68), d(t) is given by (134), m(t) satisfies (153), 
(154), and W1(t) is given by 

W1(t) =

∫ 1

0

(
C
λ1
α2(x, t)e−

µx
λ1 +

D
λ2
β2(x, t)e

µx
λ2

)
dx, (165)

with (α, β) satisfying (130)–(133), µ > 0 chosen as in (142), 
C > 0 chosen as in (146), and D = Cq2. Recall from Lemma  3 
that f (t) > 0 for all t > 0 if the MDT τ > 0 is chosen as (150).

Then, we can follow a procedure very similar to the one 
presented in the proof of Theorem  1, with the differences outlined 
in the proof of Theorem  2, to show that 
W1(t) ≤ e−υ⋆stctW1(0), (166)

for all t > 0, where 
υ⋆stc := min{υstc, a1, η}, (167)

with 

υstc := µ−
max{ε1, ε2}r

Ca2
−

max{κ1, κ2}r
C

, (168)

from which it follows the GES of the closed-loop system satisfying 
(151). This completes the proof of Theorem  3. □

6. Numerical simulations

We consider the system (1)–(4) with plant parameters λ1 = 1, 
λ2 = 1, c1(x) = 1, and c2(x) = 1.5 for all x ∈ (0, 1), and q = 0.5. 
We select ρ = 0 to satisfy Assumption  1. The initial conditions are 
selected as u0(x) = qv0(x), with v0(x) = 10(1 − x). For both CETC 
and PETC, we consider the observer-based problem, where the 
14
Fig. 3. Evolution of L2 norms of states with no control (open-loop).

Fig. 4. (a) Dwell-times under CETC and PETC. (b) CETC and PETC inputs.

initial conditions for the observer are chosen as û0(x) = 1.5u0(x)
and v̂0(x) = 1.5v0(x) for all x ∈ (0, 1). Note that the chosen plant 
parameters satisfy the condition (6), and hence, the open-loop 
system is unstable. In Fig.  3, we show the evolution of the L2 norm 
of the states of the open-loop system, where it is evident that the 
system is unstable.

6.1. CETC and PETC

The parameters for the CETC and PETC triggering mechanisms 
are chosen as follows: The parameters κi’s, η, a2, ω0, ω1 are cho-
sen as κi = 1, i = 1, 2, 3, 4, η = 1, a2 = 1, ω0 = 1, and 
ω1 = 10. It can be shown using (50)–(67) that ε0 = 6.3281, ε1 =

0.7302, ε2 = 1.7823, ε3 = 2.8125, ε4 = 20.3216. The parameter 
µ is chosen as µ = 1 such that (51) is satisfied, δ < µ is chosen 
as δ = 0.5, and C > 0 is chosen as C = 22.3581 such that (52) 
is satisfied. Then, using (49), it is calculated that a0 = 51.9098, 
and a1 is chosen as a1 = 2

√
a0a2 = 14.4097. Using (48), θ is 

calculated to be θ = 67.3195. The computed MDT is 0.0640. 
Thus, we use ∆t = 0.0001 to time discretize the plant and 
observer dynamics. Following (106), we choose h = 0.0032 as 
the sampling period for the PETC approach. Space discretization 
is done using a step size of ∆x = 0.005.

In Figs.  4 and 5, we present results for both observer-based 
CETC and PETC. Fig.  4(a) illustrates the dwell-times, while Fig.  4(b) 
shows the CETC and PETC inputs. Fig.  5(a) depicts the evolution 
of the L2 norms under CETC and PETC, which closely follow each 
other. Finally, Fig.  5(b) shows the evolution of the L2 norms of 
the observer error under CETC and PETC, where the two trajecto-
ries are identical because the observer error system (13)–(16) is 
independent of the control input.
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Fig. 5. (a) L2 norms of states under CETC and PETC. (b) L2 norms of observer 
errors under CETC and PETC.

Fig. 6. Results under STC. (a) tj+1 − tj − τ . (b) Control input. (c) L2 norm of 
states.

6.2. STC

The parameters for the STC triggering mechanism are chosen 
as follows: The parameters κi’s, η, a2, ω0, ω1 are chosen as κi =

1, i = 1, 2, 3, η = 1, a2 = 1, ω0 = 1, and ω1 = 10. It 
can be shown using (145), (147)–(149) that ε0 = 5.0625, ε1 =

0.5841, ε2 = 1.4258, ε3 = 2.2500. The parameter µ is chosen 
as µ = 1 such that (142) is satisfied, and C > 0 is chosen 
as C = 9.8032 such that (146) is satisfied. Then, using (144), 
it is calculated that a0 = 18.3865, and a1 is chosen as a1 =

2
√
a0a2 = 8.5759. Using (143), θ is calculated to be θ = 27.9624. 

The computed MDT is 0.1191. Thus, we use ∆t = 0.0001 to time 
discretize the plant dynamics. Space discretization is done using 
a step size of ∆x = 0.005.

In Fig.  6, we present results for full-state feedback STC. Fig. 
6(a) illustrates the value of tj+1 − tj − τ  satisfying (136), while 
Fig.  6(b) shows the STC inputs. Although the events are triggered 
aperiodically, due to the conservativeness of STC — stemming 
from not monitoring any triggering conditions and relying solely 
on event-triggered measurements — the events appear to be 
almost periodic, with a period of τ . Fig.  6(c) depicts the evolution 
of the L2 norms of states under STC.

7. Conclusions

In this paper, we have introduced novel dynamic event-
triggered control (ETC) mechanisms — continuous-time event-
triggered control (CETC), periodic event-triggered control (PETC), 
and self-triggered control (STC) — for 2 × 2 linear hyperbolic PDEs 
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using PDE backstepping. Our designs achieve global exponential 
stability (GES) under ETC, marking a significant advancement over 
previous works based on PDE backstepping with dynamic event-
triggering, which have only established exponential convergence. 
The CETC design introduces a switching dynamic variable and en-
forces a minimal dwell-time between events, ensuring GES while 
requiring continuous monitoring of a triggering condition. The 
PETC approach overcomes the need for continuous monitoring by 
periodically checking an appropriate triggering condition, while 
still retaining the GES property. The STC design, in addition to 
not requiring any monitoring of a triggering condition, further ad-
vances the state of the art by eliminating the need for continuous 
measurements in triggering, while still delivering GES. Though 
conservative, it computes the next event time at the current event 
using only event-triggered full-state measurements, a feature 
not previously achieved in ETC with PDE backstepping, which 
required continuous measurements for the triggering mechanism. 
One possible direction to mitigate the conservatism of STC is 
to integrate the performance-barrier ETC concept, as explored 
in Rathnayake et al. (2025) and Zhang et al. (2025).
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